Feeds:
Entradas
Comentarios

Pierre-Simon Laplace fue sin duda uno de los científicos y matemáticos más eminentes de finales del siglo XVIII en París, y puede ser considerado como uno de los principales fundadores de la teoría de la probabilidad. Sus teorías científicas, notables por su modernidad y sofisticación, dominaron durante muchos años e influyeron profundamente en la evolución posterior del pensamiento. Laplace tuvo un talento notable como matemático, y fue un destacado intelectual en Francia durante su vida. 

Pierre-Simon Laplace nació el 23 de marzo de 1749 en Beaumont-en-Auge, en la provincia de Normandía, Francia, hijo de Pierre Laplace, un próspero comerciante de sidra, y Marie-Anne Sochon, que provenía de una familia adinerada de terratenientes. . Aunque la familia de Laplace estaba financieramente en una cómoda posición, no contaba con un pedigrí intelectual. En sus primeros años asistió a un priorato benedictino, mientras su padre intentaba una carrera en la iglesia. A los 16 años Laplace se inscribió en la Universidad de Caen donde estudió teología; sin embargo, algunos de sus profesores reconocieron su excepcional talento matemático y lo estimularon a desarrollar sus dones innatos en París. 

Así fue que a los 19 años Laplace se fue de Caen sin su licenciatura y llegó a París, con una carta de presentación para presentar al eminente Jean Le Rond d’Alembert, quien aceptó cálidamente a Laplace y cumpliría el rol de mentor del brillante joven matemático. D’Alembert también consiguió un puesto para Laplace como profesor en la École Militaire. Esta posición le dio un pequeño estímulo intelectual, además de permitirle permanecer en París, donde pudo interactuar con la comunidad matemática parisina y producir sus primeros trabajos. Estas obras, leídas ante la Academia de Ciencias en 1770, se basaban en la obra de Joseph-Louis Lagrange sobre los extremos de curvas y ecuaciones en diferencias. 

Laplace era un joven ambicioso muy consciente de su propio talento, y esto resultaba evidente para sus colegas con dotes inferiores. Esta arrogancia le generó muchos enemigos, aunque al mismo tiempo éstos se vieron obligados a admitir su brillantez. Laplace estaba indignado por no haber sido elegido para la Academia de Ciencias debido a su juventud, pero en 1773 se convirtió en miembro de esa institución después de haber leído 13 artículos en tres años ante la comunidad. El trabajo inicial de Laplace fue de alta calidad en una variedad de temas, incluyendo ecuaciones diferenciales, ecuaciones en diferencias, cálculo integral, astronomía matemática y probabilidad. Estos dos últimos temas formarían un tema recurrente en el trabajo de toda la vida de Laplace. 

En la década de 1770, Laplace se ganó su reputación como matemático y científico, y en la década de 1780 hizo sus contribuciones más importantes. Laplace demostró que la respiración era una forma de combustión, estudió el impacto de las lunas sobre las órbitas de sus planetas y formuló la teoría matemática clásica del calor. El operador de Laplace (conocido como “laplaciano” por los matemáticos) tiene un papel importante en la ecuación diferencial básica del calor. Su trabajo en astronomía sentó las bases de su obra maestra sobre la estructura y la dinámica del sistema solar. 

En 1784 Laplace se convirtió en examinador del Royal Artillery Corps y formó parte de varios comités científicos. Utilizó su experiencia en probabilidad para comparar las tasas de mortalidad entre hospitales, uno de los primeros ejercicios en el análisis de supervivencia. En 1785 Laplace fue ascendido a una posición de alto nivel en la Academia de Ciencias, y poco después Lagrange se unió a la misma institución. La proximidad de estos dos eminentes científicos llevó a una explosión de actividad científica en París. 

El 15 de mayo de 1788, Laplace se casó con Marie-Charlotte de Courty de Romanges, que era 20 años menor; tuvieron dos hijos. Laplace se involucró en un comité para estandarizar pesos y medidas en 1790 que defendía el sistema métrico. Para entonces la Revolución Francesa ya había comenzado, y Laplace se hizo pasar por republicano y antimonarquista para evitar la persecución política. Era algo así como un oportunista, alterando estratégicamente sus opiniones políticas a lo largo de la Revolución para escapar del ataque. En 1793 huyó del Reino del Terror, pero más tarde fue consultado por el gobierno sobre el nuevo calendario francés; aunque este calendario era incompatible con los datos astronómicos, Laplace se abstuvo de efectuar críticas para protegerse. 

Laplace enseñó probabilidad en la École Normale, pero su nivel de abstracción hizo que sus conferencias fueran inaccesibles para los estudiantes allí. Estas conferencias se publicaron más tarde como una colección de ensayos sobre probabilidad en 1814, y brindan definiciones básicas y una gran cantidad de aplicaciones a las tasas de mortalidad, juegos de azar, filosofía natural y decisiones judiciales. En 1795 se reabrió la Academia de Ciencias, que había sido clausurada por los revolucionarios, y Laplace se convirtió en miembro fundador del Bureau des Longitudes y jefe del Observatorio de París. Sin embargo, en la última capacidad, Laplace demostró ser demasiado teórico, ya que estaba más preocupado por desarrollar su teoría planetaria para la dinámica del sistema solar que por la observación astronómica. En 1796 presentó su famosa hipótesis nebular en su Exposition du système du monde (El sistema del mundo), donde definió la génesis del sistema solar a partir de una nube de gas refrigerante aplanada y giratoria en su forma actual. En cinco libros Laplace describió el movimiento de los cuerpos celestes, las mareas del mar, la gravitación universal, los conceptos mecánicos de fuerza y ​​momento, y una historia del sistema solar. Gran parte de su material es notablemente moderno en lo que respecta a su descripción del mundo, siendo un testimonio del perdurable legado de su pensamiento científico.  

Este importante trabajo fue seguido por la Traité du Mécanique Céleste (Tratado sobre la mecánica celeste), que dio una explicación más matemática de su hipótesis nebular. Aquí Laplace formula y resuelve las ecuaciones diferenciales que describen los movimientos de los cuerpos celestes y, de manera más general, aplica la mecánica a problemas astronómicos. Aquí aparece la ecuación de Laplace, que presenta el laplaciano, aunque esta ecuación diferencial era ya conocida anteriormente. Característico en él, no pudo dar crédito a sus progenitores intelectuales. Sin embargo, está claro que Laplace fue fuertemente influenciado por Lagrange y Adrien-Marie Legendre. 

Laplace recibió una variedad de honores bajo el imperio de Bonaparte, incluida la Legión de Honor en 1805; fue canciller del senado y sirvió brevemente como ministro del interior. En 1806 se convirtió en conde, y después de la restauración se convirtió en marqués en 1817. En 1812 publicó su Théorie Analytique des Probabilités (Teoría analítica de la probabilidad), que resumía sus contribuciones a la probabilidad. En esta obra detalla el teorema de Bayes, el concepto de expectativa matemática y el principio de mínimos cuadrados (inventado simultáneamente por Carl Friedrich Gauss); estas tres ideas han tenido un impacto trascendental en la ciencia y en la estadística. Aplicó sus técnicas a una amplia variedad de temas, como la esperanza de vida y asuntos legales. Aunque otros (como Blaise Pascal) habían contribuido a la probabilidad previamente, Laplace dio un tratamiento más sistemático y demostró claramente su utilidad en problemas prácticos. 

Las ideas científicas de Laplace fueron profundas. Buscó reducir el estudio de la física a las interacciones entre moléculas individuales, actuando a distancia. Esta formulación singularmente moderna fue revolucionaria en su amplia gama de aplicaciones, incluido el estudio de presión, densidad, refracción y gravedad. Su trabajo también se distingue de las teorías moleculares anteriores en su precisa formulación matemática. En las primeras décadas del siglo XIX, Laplace aplicó sus principios a una variedad de problemas científicos, como la velocidad del sonido, la forma de la Tierra y la teoría del calor. También fundó la Société d’Arcueil en 1805, en la que también tuvo una activa participación Siméon Denis Poisson; este grupo abogó con vehemencia por un papel prominente de la matemática en la exploración científica. Después de 1812 la energía de este grupo se desvaneció y las ideas de Laplace fueron atacadas a medida que avanzaban nuevos paradigmas. Por ejemplo, Laplace se aferró a la teoría de fluidos del calor y la luz, y estas cayeron en desgracia con el avance de las ideas de Jean Baptiste Joseph Fourier. 

La decadencia de la hegemonía científica de Laplace también fue acompañada por un aislamiento social cada vez mayor, ya que sus colegas se disgustaron con su infidelidad política. En la vida posterior apoyó la restauración de los Borbones y se vio obligado a huir de París durante el regreso de Bonaparte. Murió el 5 de marzo de 1827 en París, Francia. La Academia de Ciencias, en honor a su fallecimiento, canceló su reunión y dejó su puesto vacante durante varios meses. 

Laplace contribuyó a la ola de pensamiento científico en París a finales del siglo XVIII. Aunque muchas de sus ideas pronto fueron descartadas, otras han perdurado hasta los tiempos modernos; incluso sus anticuadas teorías influyeron en la próxima generación de científicos. Más notable fue su defensa de un papel más fuerte de la matemática en la empresa científica, y su precisa formulación de las leyes matemáticas para los fenómenos científicos. Su trabajo matemático ha demostrado ser duradero; en particular, sus esfuerzos en ecuaciones diferenciales, probabilidad y mecánica se han vuelto clásicos en estas disciplinas. De particular interés es la teoría matemática del calor y su trabajo fundamental sobre la probabilidad básica.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Anuncios

Joseph Lagrange ha sido descrito como el último gran matemático del siglo XVIII. Sus ideas matemáticas fueron altamente originales e influyentes, allanando el camino para los estudios más abstractos del siglo XIX. Quizás su contribución más importante radique en su formulación mecanicista del universo, dando fórmulas matemáticas exactas para las leyes que gobiernan el movimiento y la mecánica. 

Joseph-Louis Lagrange nació el 25 de enero de 1736 en Turín, Italia. Su nombre al nacer fue Giuseppe Lodovico Lagrangia, pero más tarde adoptó la formulación francesa Joseph-Louis Lagrange. El padre de Lagrange fue Giuseppe Francesco Lodovico Lagrangia, y su madre fue Teresa Grosso. Su familia era mayoritariamente de descendencia francesa, aunque la madre de Lagrange era hija única de un médico de Turín. Lagrange fue el mayor de 11 hijos, la mayoría de los cuales murieron durante la infancia. El padre de Lagrange ocupó el cargo de tesorero de la Oficina de Obras Públicas y Fortificaciones en Turín. A pesar de esta prestigiosa posición la familia vivía modestamente.  

Lagrange originalmente estaba orientado a una carrera en derecho, pero una vez que comenzó a estudiar física reconoció su propio talento para la matemática. Al principio desarrolló un interés por la geometría, pero a los 17 años se volcó hacia el análisis. Su primer artículo (1754) desarrolló un cálculo formal, dándose cuenta luego que Gottfried Leibniz ya conocía. Posteriormente comenzó a trabajar en el problema de la tautócrona e inició el desarrollo de su cálculo de variaciones. Esta fue esencialmente una aplicación de las ideas del cálculo a conjuntos de funciones, en lugar de considerar una sola función. 

En 1755 Lagrange envió sus primeros resultados sobre este nuevo cálculo de variaciones a Leonhard Euler. Lagrange desarrolló esta pieza original y muy útil de matemática cuando tenía sólo 19 años. Al final de su vida consideró que fue su contribución más importante. Euler expresó su interés en el novedoso método para resolver problemas de optimización y, como resultado de su creciente renombre, Lagrange fue nombrado profesor en la Royal Artillery School en Turín en 1755. Esta posición era mal paga, y Lagrange se sintió poco apreciado por sus conciudadanos, lo que le llevó a abandonar posteriormente Italia. 

Al año siguiente, Lagrange aplicó su método a la mecánica. Fue capaz de describir la trayectoria de un objeto sujeto a ciertas fuerzas como solución a un problema de optimización en el cálculo de variaciones. Esta elegante formulación matemática de la mecánica revolucionaría el estudio de los sistemas dinámicos.  

Mientras tanto, se fundó la Real Academia de Ciencias de Turín, a la que Lagrange realizó numerosas contribuciones fundamentales durante la próxima década. Sus trabajos desde este período de tiempo hasta alrededor de 1770 incluyen material sobre el cálculo de variaciones, ecuaciones diferenciales, cálculo de probabilidades, mecánica celeste y movimiento de fluidos. Desarrolló la técnica de integración por partes, tan familiar para los estudiantes de cálculo, y ganó varios premios ofrecidos por la Academia de Ciencias de París, por su destacada labor sobre los movimientos de la Luna y otros cuerpos celestes. El sistema de mecánica de Lagrange estableció el principio de acción mínima: que una partícula elige la trayectoria que minimiza la energía, base de la dinámica. Muchos matemáticos franceses, incluidos Jean Le Rond d’Alembert y Pierre-Simon Laplace, reconocieron la excelente calidad de su trabajo. 

En 1763 Lagrange fue invitado a París, donde fue recibido con entusiasmo por la comunidad matemática del  lugar. D’Alembert intentó asegurarle a Lagrange una posición superior en Turín, pero las promesas no se materializaron. Como resultado, Lagrange aceptó una oferta para cubrir el puesto vacante de Euler en Berlín en 1766, lo que inició el segundo período científico de la vida de Lagrange. 

Lagrange se hizo amigo de Johann Heinrich Lambert y de Johann Bernoulli, y fue nombrado director de la Academia de Ciencias de Berlín. No tenía deberes de enseñanza, lo que le permitió centrarse en su investigación matemática. Lagrange se casó con su prima, Vittoria Conti, en 1767, y aunque no tuvieron hijos estuvieron juntos durante 16 años, hasta que la salud de Vittoria disminuyó y murió en 1783 después de una prolongada enfermedad. 

Mientras estuvo en Berlín, Lagrange disfrutó de la participación continua y del éxito en las competiciones de París, haciendo contribuciones sobresalientes al problema de los tres cuerpos. Además de estos concursos públicos, Lagrange desarrolló su propio trabajo personal sobre mecánica celeste, publicando varios artículos importantes desde 1782 en adelante. Mientras tanto, ya había comenzado a investigar ciertos problemas en álgebra, resolviendo completamente una célebre ecuación indeterminada planteada por Pierre de Fermat en 1768. Sobre la base del trabajo anterior de Euler, Lagrange demostró que cada entero se puede expresar como la suma de, como máximo, cuatro cuadrados perfectos (1770); caracterizó los números primos a través de un criterio de divisibilidad y desarrolló aún más la teoría de las formas cuadráticas (1775), abriendo vías de investigación futura para Carl Friedrich Gauss y Adrien-Marie Legendre. Dio una exposición del método de descenso infinito, inspirado en Fermat, y utilizó el método de las fracciones continuas. 

Hizo una contribución particularmente importante al análisis en 1770, cuando dio un desrrollo de la serie que involucraba las raíces de una ecuación dada, que tuvo útiles aplicaciones científicas. La fórmula de Lagrange demostró ser de gran interés para los matemáticos, ya que la mayoría de los grandes analistas del siglo XIX, incluido Augustin-Louis Cauchy, estudiaron las consecuencias de esta idea. Este trabajo, en conjunto con el de Alexandre Vandermonde, revela el concepto del grupo de permutaciones, que luego sería desarrollado por Evariste Galois

Lagrange también contribuyó a la mecánica de fluidos en la década de 1780, a las raíces imaginarias de las ecuaciones algebraicas en la década de 1770 y al análisis infinitesimal de 1768 a 1787. Su trabajo sobre la integración de ecuaciones diferenciales, que se extiende sobre las ideas de Euler, representa un primer paso en la teoría de las funciones elípticas, que atraerían mucho interés en el siglo XIX. También se debe mencionar su trabajo sobre ecuaciones diferenciales parciales, ya que condujo a la resolución de varios problemas. Su trabajo en probabilidad es de menor importancia. 

Las considerables contribuciones de Lagrange a la mecánica estaban dispersas en varias publicaciones, y las resumió en un tratado de 1788. Por esta época Lagrange se había establecido en París. Aunque Turín había intentado atraer a Lagrange para que regresara a su ciudad natal, no se sintió ansioso por abandonar Berlín hasta la muerte de su esposa en 1783. Pero los matemáticos franceses, que solicitaron agresivamente su presencia, lograron atraer a Lagrange. En 1787 se convirtió en miembro de la Academia de Ciencias, donde superó la caótica agitación política de las décadas posteriores. 

En 1792 Lagrange se casó con Renée-Françoise-Adélaïde Le Monnier, con quien también tuvo un feliz matrimonio. Durante el comienzo de la fase parisina de su carrera, la actividad de Lagrange se redujo en cierta medida. Participó activamente en la Asamblea Constituyente de 1790 sobre la estandarización de pesos y medidas, y más tarde enseñó análisis en la recién fundada École Polytechnique hasta 1799. Después de que Napoleón ascendió al poder, Lagrange fue nombrado gran oficial de la Legión de Honor y en 1808 obtuvo un cargo en el imperio. Murió la mañana del 11 de abril de 1813 en París. Las universidades de toda Europa anunciaron su muerte, y Laplace dio su oración fúnebre.  

Lagrange hizo extensas contribuciones a muchas áreas de la matemática; sus trabajos a menudo abrían nuevas áreas de investigación (como las funciones elípticas, las formas cuadráticas y el cálculo de variaciones). Lo más significativo fue su formulación de la mecánica, a veces llamada mecánica lagrangiana, que esencialmente mecanizó la comprensión del universo físico. Este demostró ser un modo poderoso e influyente de describir el mundo conocido y continúa afectando la investigación matemática en la actualidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Ernst Kummer fue uno de los grandes matemáticos creativos del siglo XIX, contribuyendo a la teoría de funciones, el álgebra y la geometría. Se le atribuyen varias técnicas e ideas matemáticas, y sus esfuerzos ayudaron a avanzar en la matemática moderna. 

Ernst Kummer nació el 29 de enero de 1810, en Sorau, Alemania, hijo de Carl Gotthelf Kummer, un médico que murió en 1813, y Frederike Sophie Rothe. Kummer ingresó en la escuela secundaria de Sorau en 1819, y estudió teología protestante en la Universidad de Halle en 1828. Sin embargo, pronto comenzó a estudiar matemática, en principio como preparación para la filosofía. En 1831 recibió su doctorado, y enseñó matemática y física en el Gymnasium de Liegnitz desde 1832 a 1842. Durante este tiempo, Leopold Kronecker fue uno de sus estudiantes, y Kummer pudo fomentar su talento natural. 

Su investigación en este tiempo se centró en las series hipergeométricas introducidas por Carl Friedrich Gauss. Kummer investigó más profundamente que nadie, obteniendo varios descubrimientos notables. Los intentos fallidos de probar el Último Teorema de Fermat llevaron a Kummer a estudiar la factorización de enteros y desarrollar la teoría de los ideales. También descubrió la superficie de Kummer, una variedad de cuatro dimensiones con 16 puntos dobles cónicos y 16 planos tangentes singulares. Maestro dotado, logró inspirar a varios estudiantes a llevar a cabo investigaciones independientes. Anteriormente había enviado parte de su trabajo sobre la teoría de funciones a Carl Jacobi, quien lo ayudó a obtener una cátedra en la Universidad de Breslau en 1842. En 1840 Kummer se casó con Ottilie Mendelssohn, prima de la esposa de Peter Lejeune Dirichlet. Ocupó su cargo en Breslau hasta 1855, y allí realizó su importante trabajo sobre la teoría de números y álgebra. Kummer introdujo números ideales y factores primos ideales para demostrar un gran teorema de Pierre de Fermat. En años posteriores, Kronecker y Richard Dedekind desarrollaron aún más sus resultados iniciales. 

En 1855, Dirichlet abandonó la Universidad de Berlín para suceder a Gauss en Göttingen, y Kummer fue nombrado reemplazo de Dirichlet. En 1856, tanto Karl Weierstrass como Kronecker también habían llegado a Berlín, iniciando un período de productividad matemática en la universidad. Kummer y Weierstrass construyeron el primer seminario alemán de matemática pura en 1861, que atrajo a muchos jóvenes estudiantes. Las conferencias de Kummer, que cubrían temas como geometría analítica, mecánica y teoría de números, fueron muy concurridas debido a su excelente exposición. 

Kummer fue bendecido con una inmensa cantidad de energía. Enseñó simultáneamente en la Kriegsschule de 1855 a 1874, fue secretario de la sección matemática de la Academia de Berlín de 1863 a 1878, y se desempeñó varias veces como decano y rector de la Universidad de Berlín. Durante esta última fase de su carrera, Kummer se centró en la geometría, con aplicaciones en sistemas de rayos y balística. Su estudio de los sistemas de rayos siguió el trabajo de Sir William Rowan Hamilton, aunque Kummer adoptó una perspectiva algebraica. En el curso de esta investigación, descubrió la llamada superficie de Kummer. Numerosos conceptos matemáticos han sido nombrados después de él. 

Cuando Kronecker y Weierstrass se separaron en la década de 1870, Kummer también podría haberse alejado de Weierstrass. Ciertamente, Kummer era política y matemáticamente conservador, evitando muchos de los nuevos desarrollos. Por ejemplo, Kummer rechazó la geometría no euclidiana por inútil. También consideraba la matemática como una ciencia pura, y creía que el atractivo de la matemática estaba en su escasez de aplicaciones. Cabe destacar que esta ha sido probablemente la opinión de los matemáticos durante la mayor parte de la historia, y solo en la era moderna surgió la opinión de que la matemática es valiosa solo si puede contribuir a la tecnología y al mejoramiento de la sociedad. 

En 1882 Kummer se retiró de su puesto, afirmando que su memoria se había debilitado. Murió el 14 de mayo de 1893 en Berlín. Tanto Gauss como Dirichlet ejercieron una gran influencia sobre el desarrollo de Kummer como matemático, y él sintió siempre un gran respeto por ambos. A pesar de su conservadurismo, Kummer pudo afectar influir en el desarrollo de la matemática a través de sus numerosos alumnos y su creatividad en bruto. Su trabajo en álgebra sobre la aritmetización de la matemática fue quizás el más importante.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.