Feeds:
Entradas
Comentarios

Archive for 26/03/17

Otra disputa entre los filósofos pre-socráticos estaba más relacionada con el mundo físico. Parménides afirmó que en el mundo real no hay tal cosa como el cambio y que el flujo de tiempo es una ilusión, una visión con paralelos en el modelo espacio-temporal de cuatro dimensiones del universo de Einstein-Minkowski. Heráclito, por otra parte, afirmaba que el cambio es omnipresente y se dice que ha dicho que uno no puede entrar en el mismo río dos veces.

Zenón de Elea, seguidor de Parménides, afirmaba que el cambio es realmente imposible y produjo cuatro paradojas para demostrarlo. La más famosa de estas describe una carrera entre Aquiles y una tortuga. Puesto que Aquiles puede correr mucho más rápido que la tortuga, digamos dos veces más rápido, se le permite a la tortuga una ventaja de una milla. Cuando Aquiles haya corrido una milla, la tortuga habrá vuelto a correr media distancia, es decir, media milla. Cuando Aquiles haya cubierto esa media milla adicional, la tortuga habrá recorrido otro cuarto de milla. Después de n+1 etapas, Aquiles ha corrido

1+\frac{1}{2}+\cdots+\frac{1}{2^{n}}=2-\frac{1}{2^{n}}

millas y la tortuga ha corrido

1+\frac{1}{2}+\cdots+\frac{1}{2^{n}}+\frac{1}{2^{n+1}}

millas, estando1/2^{n+1} millas adelante. Entonces, ¿cómo puede Aquiles alcanzar a la tortuga?

Las paradojas de Zenón también pueden interpretarse como mostrando que el espacio y el tiempo no están compuestos de átomos discretos, sino que son sustancias infinitamente divisibles. Matemáticamente hablando, su argumento implica la suma de la progresión geométrica infinita

1+\frac{1}{2}+\frac{1}{4}+\cdots,

ninguna suma parcial finita de la cual suma 2. Como diría más tarde Aristóteles, esta progresión es sólo potencialmente infinita. Ahora se comprende que Zenón estaba tratando de enfrentarse a la noción de límite, que no se explicó formalmente hasta el siglo XIX, aunque el enciclopedista francés Jean Le Rond d’Alembert (1717 – 1783) había iniciado algunos avances.

 

Read Full Post »