Feeds:
Entradas
Comentarios

Archive for 4 de octubre de 2017

El campo de la astronomía se había desarrollado rápidamente en el siglo XIX, y la matemática conservaba su importancia vital para esta ciencia hermana. Friedrich Bessel no sólo se convirtió en uno de los más grandes astrónomos, calculando con precisión varias distancias astronómicas y siendo calificado como el fundador de la escuela alemana de astronomía práctica, sino que también desarrolló teorías matemáticas sobresalientes para explicar las perturbaciones de las órbitas planetarias. 

El 22 de julio de 1784, Friedrich Bessel nació en Minden, Alemania. Su padre era un funcionario público de esa ciudad, y su madre era hija de un ministro. Bessel tenía una familia grande, conformada por seis hermanas y dos hermanos. Bessel asistió al Gymnasium (instituto alemán) en Minden, pero después de cuatro años lo abandonó para convertirse en aprendiz de comerciante. Mientras estaba en la escuela, tuvo una inclinación hacia la matemática y la física, pero no mostró ningún grado digno de ser  destacado hasta que alcanzó los 15 años de edad. En 1799 comenzó su aprendizaje con Kulenkamp, una firma famosa mercantilista; rápidamente demostró su facilidad con los cálculos y la contabilidad, y como resultado se le proporcionó un sueldo escaso, que permitió que se emancipara de la dependencia de sus padres.

Mientras tanto, Bessel pasaba las noches estudiando varios temas como preparación para su futura carrera como oficial de carga. Pronto dominó la geografía, el español y el inglés, así como el arte de la navegación; esta disciplina despertó por primera vez su fascinación por la astronomía. No contento simplemente con conocer la tecnología de su comercio, Bessel comenzó a investigar los aspectos más profundos de la astronomía y la matemática, considerando que este conocimiento fundamental era esencial. Entre sus primeros logros en el campo de la astronomía encontramos la determinación de la longitud de Bremen, utilizando un sextante que había construido. Él también comenzó a leer literatura astronómica, y de esta manera descubrió las observaciones de 1607 del astrónomo Thomas Harriot del cometa Halley. Después de completar la reducción de las observaciones de Harriot (un proceso que implica compensar la refracción de la luz causada por la atmósfera terrestre y generalmente liberar las observaciones de errores), se la presentó al astrónomo Heinrich Olbers con su propio cálculo de la órbita en 1804. El resultado estaba en estrecho acuerdo con el trabajo de Halley, y Olbers alentó a Bessel a complementar estas reducciones con algunas observaciones adicionales; el fruto de este trabajo fue un artículo impreso en el Monatliche Correspondenz. Con la profundidad digna de un material de tesis doctoral, este artículo atrajo la atención de muchos lectores y marcó una transición en la vida de Bessel.

A principios de 1806, antes de terminar su aprendizaje, Bessel se convirtió en asistente en un observatorio privado cerca de Bremen, que era propiedad de un rico funcionario con interés en la astronomía que tenía contactos con muchos científicos. En el observatorio Bessel adquirió una escolarización completa en la observación de planetas y cometas, y mientras tanto hizo otras contribuciones al cálculo de órbitas de cometas. En 1807 comenzó la reducción de observaciones de James Bradley para 3.222 estrellas, lo que marcó uno de los logros más grandes de Bessel. Friedrich Wilhelm III de Prusia construyó un nuevo observatorio en Königsberg y Bessel fue nombrado director y profesor de astronomía en 1809. Dado que no tenía doctorado, la Universidad de Göttingen le dio uno por sugerencia de Carl Friedrich Gauss, quien había conocido a Bessel en 1807.

Durante la construcción del observatorio, Bessel continuó su trabajo en la reducción de los datos de Bradley; por sus tablas de refracción resultantes, fue galardonado con el Premio Lalande en 1811 por el Institut de France. En 1813 comenzó sus observaciones en el observatorio ya terminado, y permaneció en Königsberg como profesor e investigador por el resto de su vida. En 1812 se casó con Johanna Hagen, con quien tuvo dos hijos y tres hijas. Este afortunado matrimonio fue ensombrecido por la enfermedad y las muertes tempranas de sus hijos, y Bessel encontró distracción en caminar y cazar.

Bessel logró mucho en el campo de la astronomía. La reducción de los datos de Bradley permitió una correcta determinación de las posiciones y movimientos de las estrellas, pero el propio programa de observación y reducción inmediata de Bessel dio como resultado datos altamente precisos. También dio la primera estimación precisa de la distancia a una estrella fija, utilizando técnicas de triangulación y un heliómetro. También participó en la geodesia, la medición de la Tierra, completando una triangulación de Prussia del Este en 1830 con un nuevo aparato de medición y el método de mínimos cuadrados de Gauss. La estimación resultante de Bessel de los parámetros de las dimensiones de la Tierra le valió fama internacional.

Bessel estaba interesado en la matemática a través de su estrecha conexión con la astronomía. El problema de la perturbación en la astronomía era susceptible de análisis utilizando ciertas funciones hipergeométricas confluentes especiales, más tarde llamadas funciones de Bessel. Hubo dos efectos de un planeta intruso en la órbita elíptica de un planeta dado: el efecto directo de la perturbación gravitacional y el efecto indirecto que surge del movimiento del sol causado por el planeta perturbador. Bessel separó las dos influencias, y las funciones de Bessel aparecen como coeficientes en el desarrollo en serie del efecto indirecto. En su estudio del problema, Bessel hizo un estudio intensivo de estas funciones especiales que se describen en su tratado de Berlín de 1824. Casos especiales de estas funciones se conocían desde hacía más de un siglo, descubiertos por Johann Bernoulli y Gottfried Leibniz; Daniel Bernoulli (1732) y Leonhard Euler (1744) también habían investigado los coeficientes de Bessel. Pero la motivación de Bessel surgió de su aplicación a la astronomía, no como un estudio separado en matemática pura.

Su salud fue en declive a partir de 1840, y su último viaje importante a Inglaterra fue en 1842; como resultado de su participación en el Congreso de la Asociación Británica en Manchester, Bessel se animó a completar y publicar algunas investigaciones restantes. Después de dos años agonizantes luchando contra el cáncer, murió el 17 de marzo de 1846, en Königsberg.

Aunque Bessel es conocido principalmente como astrónomo, al igual que Gauss, hizo contribuciones sobresalientes a la matemática pura que podrían aplicarse a la astronomía. Su nombre está ligado a las funciones especiales mencionadas anteriormente, así como a una desigualdad que se utiliza hoy en el análisis de Fourier y la teoría de los espacios de Hilbert. Tanto las funciones de Bessel como la desigualdad de Bessel tienen una relevancia perdurable para los matemáticos modernos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncio publicitario

Read Full Post »