Enrico Betti es conocido por sus contribuciones a la teoría de Galois (una teoría algebraica abstracta utilizada para resolver ecuaciones algebraicas, desarrollada por Evariste Galois) y a la teoría de las funciones elípticas. Su trabajo en el análisis del hiperespacio inspiró más tarde a Henri Poincaré en la fundación de la geometría algebraica.
Betti nació el 21 de octubre de 1823 en Pistoia, Italia, y su padre murió cuando era muy joven. Como resultado, su madre supervisó su educación, y posteriormente se matriculó en la Universidad de Pisa, recibiendo un grado en ciencias físicas y matemática. Después se involucró en la guerra por la independencia italiana, participando como soldado en las batallas de Curtatone y Montanara. Su profesión posterior fue como profesor de matemática de secundaria en Pistoia, aunque simultáneamente continuó sus propias investigaciones en matemática pura.
Gran parte del trabajo de Betti era en el campo del álgebra. El trabajo de Evariste Galois, que recibió poco reconocimiento durante la breve vida de su autor, se resumió en gran medida en una carta personal de 1832 que posteriormente fue publicada por Joseph Liouville en 1846. Desde entonces, Betti promovió el trabajo de Galois sobre la solubilidad de las ecuaciones algebraicas mediante operaciones por radicales (la cuestión de determinar qué ecuaciones podrían tener sus soluciones expresadas en términos de radicales y números racionales). Conectando el trabajo de Galois con las investigaciones previas de Niels Henrik Abel y Paolo Ruffini, Betti superó la brecha entre los nuevos métodos del álgebra abstracta y los problemas clásicos (como el quíntico) tratados anteriormente. Muchos consideraban entonces que las labores de Galois eran irrelevantes y estériles, pero las elaboraciones de Betti en dos documentos de 1852 y 1855 constituyen un paso importante para revertir esas opiniones adversas; hoy en día la teoría de Galois es vista como un componente fructífero y encantador del álgebra abstracta.
También investigó la teoría de las funciones elípticas, un tema popular en el siglo XIX; Betti describió esta rama de la matemática relacionándola con la construcción de ciertas funciones trascendentales en 1861, y Karl Weierstrass desarrolló estas ideas en los años siguientes. Tomando otra mirada no-algebraica sobre el mismo tema, Betti investigó las funciones elípticas desde la perspectiva de la física matemática. Con la guía de Bernhard Riemann, con quien Betti se había reunido en Göttingen en 1858, Betti investigó los procedimientos utilizados en electricidad y en análisis matemático.
En 1865 Betti aceptó una cátedra en la Universidad de Pisa, que conservó por el resto de su vida. Más tarde se convirtió en rector de la universidad y director de la escuela de profesores en Pisa. Desde 1862 fue miembro del parlamento italiano, sirvió brevemente como subsecretario de Estado para la educación pública en 1874 y se convirtió en senador en 1884. Sin embargo, sus intereses principales no estaban en la política o la administración, sino en la investigación matemática pura; Betti sólo deseaba tener soledad para su propia reflexión intelectual y reuniones animadas con sus amigos más cercanos.
El trabajo de Betti en el campo de la física teórica condujo a una ley de reciprocidad en la teoría de la elasticidad, conocida como el teorema de Betti (1878). Primero aprendió los métodos de George Green para la integración de las ecuaciones de Pierre-Simon Laplace en la teoría de potenciales y utilizó esta metodología en el estudio de la elasticidad y el calor. También analizó el hiperespacio en 1871; Poincaré se inspiraría más tarde en Betti para ampliar estas investigaciones preliminares. Los números de Betti, acuñados por Poincaré, se utilizarían comúnmente como características mensurables de una variedad algebraica.
Betti fue un excelente maestro, trayendo su pasión y su amplio conocimiento al aula, y fue un ferviente defensor del regreso a la educación clásica. Consideró los Elementos de Euclides de Alejandría como un texto modelo para la instrucción, y abogó firmemente por su regreso a las escuelas secundarias. Influyó en varias generaciones de estudiantes en Pisa, guiando a muchos hacia la búsqueda del conocimiento científico. Murió el 11 de agosto de 1892, en Pisa.
El impacto de Betti en la matemática todavía se siente hoy. Su investigación temprana en topología algebraica fue fundamental, como lo atestigua la importancia duradera de los números de Betti. Tal vez aún más importante fue su desarrollo de la teoría de Galois, que se ha convertido en un gran componente de los estudios modernos en álgebra abstracta.
Fuente bibliográfica:
- McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
I’m not sure the place you are getting your information, however great topic.
I must spend a while finding out much more or understanding more.
Thank you for great info I was looking for this info for my mission.