Uno de los temas más controvertidos de la matemática del siglo XX fue la base lógica de la disciplina; específicamente, ciertos matemáticos estaban trabajando para demostrar que la formulación axiomática de la matemática era consistente (que cualquier proposición podría ser verdadera o falsa, pero no ambas). Brouwer representó una oposición a esta agenda, presentando su matemática intuicionista como una alternativa deseable.
Luitzen Brouwer nació el 27 de febrero de 1881, en la ciudad de Overschie en los Países Bajos. Era intelectualmente precoz, completando su educación secundaria a la edad de 14 años; en 1897 ingresó en la Universidad de Ámsterdam, donde estudió matemática durante los siguientes siete años. Brouwer dominó rápidamente la matemática contemporánea, y obtuvo nuevos resultados con respecto a los movimientos continuos en variedades.
Los intereses de Brouwer eran diversos. Su actividad matemática incluía topología, mapeos y lógica, así como filosofía mística. Su visión personal de la matemática como una actividad mental libre era constructivista y difería mucho del enfoque formalista defendido por David Hilbert y Bertrand Russell. Brouwer participó en el debate sobre los fundamentos de la matemática; rechazó la idea de que la lógica debería ser el pilar de la matemática; más bien, la lógica era solo una expresión de regularidades y patrones notorios en los sistemas construidos. La extrañeza de este punto de vista se hizo evidente cuando Brouwer atacó la ley del tercero excluido, que establece que o bien una declaración dada o su negación lógica debe ser verdadera (que se utiliza en el método «prueba por contradicción»).
La tesis doctoral de Brouwer de 1907, On the Foundations of Mathematics, expresa sus opiniones. De estas ideas nació la «matemática intuicionista», que pone énfasis en la capacidad de construir objetos matemáticos. Rechazó la ley del tercero excluido en su sistema y criticó el intento de Hilbert de probar la coherencia de la aritmética.
En los cinco años desde 1907 hasta 1912, Brouwer descubrió varios valiosos resultados. Estudió el quinto problema de Hilbert, la teoría de grupos continuos, y en el proceso descubrió el teorema de la traslación plano y el «teorema de la bola peluda«.
Brouwer también estudió varios mapeos topológicos, desarrollando la técnica de usar las llamadas «simplices» para aproximar mapeos continuos. El grado asociado condujo a la noción de clase de homotopía, que permitió la clasificación topológica de muchas variedades. Como resultado, la noción de dimensión (en el sentido topológico) se asentó en una posición más rigurosa.
En 1912 fue nombrado profesor de matemática en la Universidad de Ámsterdam, y pronto reanudó su investigación sobre los fundamentos de la matemáticas En 1918 publicó una teoría de conjuntos diferente, que no se basaba en la ley del tercero excluido, seguida de nociones similares de medida y función en los años siguientes. Como era de esperar, los teoremas que obtuvo son algo diferentes (por ejemplo, las funciones reales son siempre uniformemente continuas). Por estas razones, sus resultados no fueron totalmente aceptados, y muchos matemáticos simplemente han ignorado su punto de vista. La prueba por contradicción es un método de demostración muy poderoso y comúnmente utilizado; los matemáticos no están dispuestos a renunciar a los muchos teoremas que pueden establecer abrazando el sistema potencialmente más riguroso de Brouwer.
A partir de 1923, Brouwer se centró en su agenda intuicionista, intentando persuadir a los matemáticos para que rechazaran la ley del tercero excluido. A fines de la década de 1920, los lógicos comenzaron a investigar la conexión de la lógica de Brouwer con la lógica clásica; después de que los teoremas de incompletitud de Kurt Gödel aniquilaran el programa de David Hilbert, más personas se interesaron en el enfoque intuicionista de la matemática.
Brouwer ganó el reconocimiento internacional de varias sociedades y academias. Murió en Blaricum, Países Bajos, el 2 de diciembre de 1966. Aunque sus esfuerzos por persuadir a los matemáticos de su propio punto de vista no tuvieron éxito (nuevamente, esto se debió en parte a la renuencia a abandonar la poderosa herramienta de la prueba por contradicción, y también porque el marco intuicionista está enraizado en la filosofía mística), Brouwer concientizó sobre las limitaciones de cualquier sistema matemático y predijo correctamente la desaparición de cualquier intento de establecer la consistencia y la integridad de un sistema axiomático. Es un personaje importante en la historia de la lógica matemática, que representa el contramovimiento antirracionalista de la mística que surgió en el siglo XX.
Fuente bibliográfica:
- McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Write more, thats all I have to say. Literally, it seems as though you relied on the video to
make your point. You obviously know what youre talking about, why
throw away your intelligence on just posting videos to your site when you could be
giving us something informative to read?
Good post. I learn something new and challenging on sites I stumbleupon everyday.
It’s always exciting to read articles from
other authors and practice a little something from other web sites.
I really love your site.. Great colors & theme. Did you
make this web site yourself? Please reply back as I’m wanting to create my own personal site and would
love to learn where you got this from or exactly what the
theme is called. Thank you!
Your mode of explaining everything in this paragraph is actually pleasant,
every one be able to without difficulty be aware of it,
Thanks a lot.
What’s up everybody, here every person is sharing these familiarity, therefore it’s pleasant to read this website, and I used to pay a
quick visit this web site all the time.
An intriguing discussion is definitely worth comment.
I do believe that you should publish more on this issue, it may not be a taboo subject but usually folks don’t talk about
these topics. To the next! All the best!!
Your site has superb material. I bookmarked the site
Hi friends, good paragraph and good urging commented here, I am actually enjoying by these.