Después del resplandor de la luz en Grecia durante la era clásica, una gran oscuridad intelectual y cultural consumió a Europa; Leonardo Fibonacci reavivó esa luz durante las primeras sacudidas del Renacimiento italiano, y esa iluminación estaba destinada a crecer más en la brillante armonía de los logros matemáticos actuales. Ciertamente, otros hicieron contribuciones importantes en siglos anteriores en otras partes del mundo, pero Fibonacci fue el primer gran matemático del Occidente cristiano. Como personaje renacentista, revivió el interés por la literatura y los valores clásicos y, en particular, renovó la apreciación del conocimiento matemático.
Leonardo Fibonacci era un miembro de la familia Bonacci, nacido en Pisa, Italia, de Guglielmo Bonacci. Solo tenemos una estimación de la fecha de su nacimiento, 1170, ya que hay pocos registros de los detalles de su vida; una de las principales fuentes es su propio libro, Liber Abbaci (Libro del ábaco). Fue apodado Bigollo, un término que designa a un holgazán, que puede haber sido un epíteto lanzado por aquellos que pensaban ligeramente acerca del valor del trabajo matemático. Su padre era un funcionario en la República de Pisa, y en 1192 recibió una comisión para dirigir una colonia comercial pisana en Argelia. El joven Fibonacci acompañó a su padre, que esperaba educar a su hijo en las artes del cálculo para poder algún día convertirse en comerciante. Fibonacci superó con creces las expectativas de su padre.
La instrucción en África de un maestro árabe era bastante buena, probablemente mucho mejor que en Europa, y Fibonacci encontró los «nuevos» números hindúes. Estos números eran simbólicamente bastante similares a los dígitos modernos, y consistían en 10 números distintos, que podían describir cualquier cantidad meramente a través de un arreglo apropiado (lo mismo que el sistema numérico moderno). En ese momento en Europa, la mayoría de los comerciantes aún utilizaban números romanos, por lo que los cálculos de suma y multiplicación eran mucho más difíciles. Fibonacci dominó rápidamente este sistema numérico superior. En los años siguientes, viajó extensamente, incluso por Egipto, Grecia, Sicilia, Siria y Provenza, en la búsqueda de su vocación mercantil, y en todas las ciudades se debatiría con los eruditos locales sobre sus métodos de cálculo. A través de estas disputas, Fibonnaci llegó a ver que estos otros hombres cultos, que no entendían el sistema hindú, estaban en una gran desventaja matemática, y a menudo estaban equivocados.
Estas experiencias fueron cruciales para el crecimiento intelectual de Fibonacci. En 1200 regresó a su ciudad natal y trabajó durante los siguientes 25 años en el cálculo con números hindúes. Debido a su experiencia en los negocios, se vio impulsado por atender preocupaciones prácticas, y por lo tanto sus investigaciones se vieron motivadas por el deseo de aplicarlas a asuntos comerciales; sin embargo, también realizó un considerable trabajo teórico en álgebra y geometría.
En 1202 se completó el Liber Abbaci de Fibonacci; como el ábaco que aparece en su título, este trabajo se centró en el cálculo. Se agregó un nuevo material en una segunda versión en 1228. La primera sección trataba sobre los números romanos y los cálculos con los dedos, luego se introdujeron los números de la India, junto con la barra de fracción. La siguiente porción era principalmente relevante para los comerciantes, y se asemejaba a un almanaque: había información sobre el precio de los bienes, el cálculo de los intereses y los salarios, la medición de cantidades y el intercambio de monedas. La tercera sección contenía acertijos y enigmas matemáticos, y reglas para la suma de series (por ejemplo, había una fórmula para la suma de una serie geométrica).
Un problema famoso se enuncia de la siguiente manera: dado un par de conejos, tardan un mes en madurar y luego producen un par de crías cada mes, ¿cómo aumenta la población? Suponiendo que los descendientes maduran de la misma manera que sus padres, la población mensual sigue la secuencia 1, 1, 2, 3, 5, 8, . . . Estos números, ahora conocidos como la sucesión de Fibonacci, son uno de los primeros ejemplos de recursión, ya que cada término es igual a la suma de los dos términos anteriores. La recursividad, el concepto de que la definición de una cosa depende de sí misma (o al menos de su pasado), es un concepto poderoso en la matemática moderna, la informática y la filosofía.
Aún más importante para la historia de la matemática es la introducción de Fibonacci de los números negativos. Antes de este tiempo, los comerciantes tenían un concepto de resta como una forma de mantener un registro de su inventario. Pero dado que era imposible tener un inventario negativo, el concepto de número negativo no tenía sentido para ellos. Por ejemplo, dirían que la ecuación (aunque no la escribirían de esta manera) no tiene solución. Sin embargo, Fibonacci usó números negativos, considerados débitos o deudas, para resolver ecuaciones, y parece que fue el primero en hacerlo. Otros que vinieron después de él formalizarían la noción de un número negativo y construirían los enteros. Es interesante notar que algunos conceptos matemáticos que ahora se dan por descontados, como los números negativos, alguna vez fueron muy misteriosos, y se requirió de genio y creatividad para llegar a la nueva idea. Ciertamente, los contemporáneos de Fibonacci captaron la idea lentamente.
La cuarta sección de este libro trataba del cálculo de radicales, usando fórmulas de aritmética de los Elementos de Euclides de Alejandría, y contenía ejemplos del antiguo método de aproximación. Por ejemplo, para aproximar pi, los antiguos encontrarían dos fracciones, una un poco más pequeña (como 223/71) y la otra un poco más grande (como 220/70) que pi, que podían calcularse fácilmente. En general, el Liber Abbaci es notable por la riqueza de sus ejemplos y el rigor de las demostraciones. Fibonacci era un maestro en su arte, y presentaría varios métodos diferentes de solución, incluidos enfoques algebraicos y geométricos.
Fibonacci también escribió Practica Geometriae (Práctica de la geometría) en 1220 o 1221, que obviamente se centra en geometría. Apelando a los Elementos de Euclides, resuelve problemas de raíz cuadrada y cúbica, y da varios cálculos de segmentos y superficies de figuras planas. Una aproximación de pi se da al inscribir un polígono regular de 96 lados. También hay algunas instrucciones prácticas para el inspector de campo; por ejemplo, da instrucciones para el uso del «archipendulum», un instrumento geodésico utilizado para encontrar proyecciones horizontales de líneas rectas que se encuentran en una colina inclinada.
Fibonacci también hizo un gran progreso en el análisis indeterminado, el estudio de varias ecuaciones en varias incógnitas. En Flos (1225) y Liber Quadratorum (Libro de números cuadrados) (1225) demuestra su facilidad con la teoría de números, planteando y resolviendo varios problemas antiguos de análisis indeterminado. En 1225 fue presentado al emperador Federico II, y sus últimos escritos fueron en respuesta a las preguntas formuladas por el filósofo imperial Teodoro. El último registro de Fibonacci data de 1240, cuando su ciudad le otorgó un salario anual por su asesoramiento sobre prácticas contables.
Ciertamente, Fibonacci desempeñó un papel fundamental en el renacimiento de la matemática en Europa Occidental. Su presentación sistemática del conocimiento nuevo y antiguo, moviéndose fluidamente de problemas más fáciles a más difíciles, ayudó a la diseminación de ideas matemáticas. Más importante aún, a través de Fibonacci surgió un nuevo concepto de número en Occidente. Su aprobación de los numerales hindúes fue crucial para avanzar en la ciencia del cálculo, pero fue el primero en reconocer cantidades negativas, así como el cero, como números genuinos. Además, su uso de un símbolo o letra como una representación abreviada de un número genérico fue un paso importante hacia el álgebra moderna, que es abstracta y totalmente simbólica. Fibonacci estaba familiarizado con los textos árabes, que habían preservado la flor del empeño matemático griego; al transmitir y sistematizar este material, Fibonacci revivió el interés en los clásicos. En los años siguientes, los matemáticos europeos harían avances maravillosos desde los fundamentos griegos.
Fuente bibliográfica:
- McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Deja una respuesta