Feeds:
Entradas
Comentarios

Archive for 8/08/18

Sophie Germain es conocida como una de las mejores matemáticas de Francia. Hizo contribuciones importantes a la teoría de números, a las ecuaciones diferenciales parciales y a la geometría diferencial. Germain pudo lograr mucho a pesar de la falta de educación formal y la oposición de sus padres. 

Nacida como hija de Ambroise-François Germain y Marie-Madeleine Gruguelu el 1 de abril de 1776, en París, Sophie Germain vivió en una casa acomodada durante tiempos turbulentos. Su padre era diputado por los Estados Generales, y era de profesión comerciante; más tarde se convirtió en director del Banco de Francia. Bajo esta cómoda situación, Germain creció con la extensa biblioteca de su padre a su disposición. En un momento en que las mujeres no recibían regularmente educación, Germain se las arreglaba leyendo en casa. A los 13 años leyó un relato de la muerte de Arquímedes de Siracusa en manos de un descuidado soldado, y el matemático siciliano se convirtió en un símbolo heroico para ella. A esta edad tan joven, decidió ser matemática. Aunque sus padres se opusieron a esta dirección de sus energías, primero dominó el latín y el griego, y luego comenzó a leer a Sir Isaac Newton y a Euclides de Alejandría

Eventualmente, la biblioteca en el hogar se volvió insuficiente para las necesidades intelectuales de Germain, y a los 18 años buscó una mejor situación. Pudo obtener notas de conferencias de los cursos impartidos en la École Polytechnique, y estaba particularmente interesada en las conferencias de análisis de Joseph-Louis Lagrange. Aunque no está registrado, Germain fingió ser un estudiante, tomando el seudónimo de Le Blanc, y presentó un trabajo a largo plazo sobre análisis a Lagrange. Éste quedó debidamente impresionado por su originalidad, y buscó a su autor. Al descubrir que el escritor era en realidad Germain, Lagrange se convirtió en su patrocinador y consejero matemático. 

Germain obtuvo educación superior puramente por correspondencia con los grandes eruditos de Europa; por este medio ella se hizo muy versada en matemática, literatura, biología y filosofía. Se interesó en ciertos problemas de la teoría de números después de leer la Théorie des nombres (1798) de Adrien-Marie Legendre, y pronto surgió una correspondencia voluminosa entre los dos. En el curso de estas comunicaciones, colaboraron en resultados matemáticos, y algunos de los descubrimientos de Sophie se incluyeron en la segunda edición de la Théorie

También en este momento ella leyó Disquisitiones arithmeticae (Investigaciones aritméticas) de Carl Friedrich Gauss, y entró en una correspondencia con él bajo el seudónimo de Le Blanc. En 1807, cuando las tropas francesas ocuparon Hannover, temió por la seguridad de Gauss en Göttingen. Esperando que no se repitiera la muerte de Arquímedes en la persona de Gauss, se comunicó con un comandante francés que era amigo de su familia. De esta manera, Gauss llegó a conocer su verdadera identidad. 

Entre su trabajo en teoría de números, Germain trabajó en el famoso problema llamado último teorema de Fermat, que fue resuelto por Andrew Wiles en 1994. El teorema es una conjetura de Pierre de Fermat, que establece que no hay soluciones enteras x, y, z a la ecuación x^{n}+y^{n}=z^{n} si n es un número entero mayor que dos. Germain pudo demostrar que no existen soluciones enteras positivas si x, y, z son relativamente primos (no tienen divisores comunes) entre sí y n, donde n es cualquier primo menor que 100. 

Germain estaba interesada en matemática más allá de la teoría de números; de hecho, hizo contribuciones a la matemática aplicada y la filosofía. En 1808, el físico alemán Ernst Chladni visitó París y realizó experimentos de acústica y elasticidad. Tomaría una placa horizontal de metal o vidrio, rociaría arena uniformemente sobre ella y luego causaría vibraciones en la placa frotando el borde con un arco de violín. Las oscilaciones resultantes moverían las partículas de arena a ciertos grupos estables, llamados figuras de Chladni. En 1811, la Académie des Sciences ofreció un premio por la mejor explicación del fenómeno; el desafío era formular una teoría matemática de las superficies elásticas que estuviera de acuerdo con las figuras de Chladni. 

Germain intentó resolver el problema, y después de una serie de revisiones y concursos subsecuentes, ganó el premio en 1816 con un artículo que llevaba su propio nombre. Su trabajo trataba las vibraciones de las superficies elásticas curvas y planas en general. En 1821, ella produjo una versión mejorada de su trabajo premiado, en la que afirmó que la ley para la superficie elástica vibratoria general está dada por una ecuación diferencial parcial de cuarto orden. Uno de los conceptos que desempeña un papel en este trabajo fue la noción de curvatura media, que era un promedio de las curvaturas principales, es decir, las curvaturas de una superficie en dos direcciones perpendiculares. 

En trabajos posteriores, Germain amplió la física de las superficies elásticas curvadas vibrantes, teniendo en cuenta el efecto de grosor variable. También contribuyó a la filosofía, desarrollando el concepto de unidad de pensamiento: que la ciencia y las humanidades siempre estarían unificadas con respecto a su motivación, metodología e importancia cultural. Ella murió el 27 de junio de 1831 en París.   

El trabajo de Germain no ha recibido muchos seguidores, y esto puede deberse en parte a su género. Su trabajo sobre teoría de números y ecuaciones diferenciales fue de la más alta calidad, y ella contribuyó al desarrollo de la geometría diferencial a través de su noción de curvatura media.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »