Feeds:
Entradas
Comentarios

Archive for octubre 2019

Karl Weierstrass ha sido descrito como el padre del análisis moderno. De hecho, sus rigurosos estándares de rigor se han incorporado a la disciplina moderna del análisis, y muchos de los métodos y temas se deben a él. Weierstrass también hizo contribuciones fundamentales al análisis complejo y la teoría de las funciones elípticas.

Karl Theodor Wilhelm Weierstrass nació el 31 de octubre de 1815 en Ostenfelde, Alemania. Su padre, Wilhelm Weierstrass, era un funcionario público altamente educado. La madre de Weierstrass se llamaba Theodora Vonderforst, y Weierstrass era el mayor de cuatro hijos. Cuando Weierstrass tenía ocho años su padre se convirtió en inspector de impuestos, lo que implicaba una constante reubicación. En 1827 murió su madre.

La familia se estableció en 1829 cuando el padre de Weierstrass consiguió un puesto más permanente en Paderborn, y Weierstrass asistió a la escuela secundaria local. Allí se destacó en matemática por encima de todas las materias, y desarrolló una facilidad inusual y amor por esta disciplina. Ya estaba leyendo el famoso Journal de Crelle en 1834 cuando ingresó a un programa de finanzas en la Universidad de Bonn. La carrera de finanzas no era elección de Weierstrass sino de su padre; en rebeldía y con espíritu de aflicción Weierstrass desperdició sus años universitarios con exceso de alcohol y mucho tiempo de dedicación a la esgrima. Aunque no asistía a la mayoría de sus clases, Weierstrass continuó con sus clases privadas.

En 1840, Weierstrass aprobó sus exámenes con excelentes resultados, habiendo demostrado una cierta derivación de Niels Henrik Abel a partir de una ecuación diferencial; su examinador pensó que la prueba era digna de publicación. Weierstrass pasó a enseñar en la escuela secundaria de Münster, y escribió tres artículos entre 1841 y 1842 sobre variables complejas. En estos documentos reformuló el concepto de función analítica en términos de series de potencias convergentes, en oposición al típico enfoque a través de la diferenciación. Mientras tanto, enseñó una variedad de temas, como historia, geografía e incluso gimnasia, y se aburrió por completo. La carga de trabajo era bastante pesada, porque realizaba investigaciones sobre matemática teórica en cada momento libre. Este ajetreo puede haber causado sus problemas de salud posteriores, que comenzaron en 1850: sufrió ataques de mareos, seguidos de náuseas.

Weierstrass trabajó en Brauensberg desde 1848, pero después de la publicación en 1854 de su Toward the Theory of Abelian Functions, que fue ampliamente aclamado por los matemáticos, recibió varias ofertas de universidades destacadas. Este artículo esbozaba la representación de funciones abelianas como series de potencias convergentes, y la Universidad de Königsberg le confirió un doctorado honorario en 1854. Ernst Eduard Kummer intentó conseguir un puesto para Weierstrass en la Universidad de Breslau, pero este intento fracasó. Weierstrass permaneció como profesor titular en Brauensberg hasta 1856, cuando aceptó el trabajo de sus sueños en la Universidad de Berlín. Mientras tanto, publicó un seguimiento de su artículo de 1854, que daba todos los detalles de su método de inversión de integrales hiperelípticas.

El mandato de Weierstrass en Berlín, junto con Kummer y Leopold Kronecker, convirtió a esa escuela en la meca matemática de Alemania en ese momento. Las concurridas conferencias de Weierstrass de los próximos años dan una idea de la diversidad y la profundidad de su investigación matemática: en 1856 discutió la teoría de las funciones elípticas aplicadas a la geometría y la mecánica, en 1859 abordó los fundamentos del análisis y en 1860 impartido conferencias sobre cálculo integral. Sus investigaciones produjeron una función continua que no era diferenciable en ninguna parte; la existencia de una función tan extraña destrozó la excesiva dependencia de la mayoría de los analistas en la intuición, ya que hasta ese momento los matemáticos solo podían concebir la no diferenciabilidad que ocurre en puntos aislados. El curso de Weierstrass de 1863 fundó la teoría de los números reales, un área en la que otros matemáticos como Richard Dedekind y George Cantor, también trabajarían. Él demostró que los números complejos son la única extensión algebraica conmutativa de los números reales, un resultado que Carl Friedrich Gauss declaró anteriormente pero nunca probó.

Los problemas de salud de Weierstrass continuaron y experimentó un colapso total en 1861; se tomó el año siguiente para recuperarse, pero nunca fue el mismo. A partir de ese momento, tuvo un asistente para escribir sus conferencias, y los dolores crónicos en el pecho reemplazaron su mareo.

Weierstrass organizó sus diversas conferencias en cuatro cursos principales: funciones analíticas, funciones elípticas, funciones abelianas y el cálculo de variaciones. Los cursos eran frescos y estimulantes, ya que gran parte del material era su propia investigación innovadora. Es un testimonio del legado de su estilo que los cursos modernos de análisis siguen la progresión de temas de Weierstrass, incluido el concepto de serie de potencia de una función, continuidad y diferenciabilidad y continuación analítica.

Weierstrass colaboró con Kummer y Kronecker de manera rentable durante muchos años, pero luego él y Kronecker se separaron de las ideas radicales de Cantor; Weierstrass apoyaba las ideas innovadoras de Cantor en teoría de conjuntos, pero Kronecker no podía aceptar las construcciones patológicas. Weierstrass tuvo muchos estudiantes excelentes, algunos de los cuales se convirtieron en matemáticos famosos, como Cantor, Sophus Lie y Felix Klein. Instruyó en privado a Sofia Vasilyevna Kovalévskaya, a quien no se le permitió inscribirse formalmente debido a su género. Weierstrass tuvo una gran relación intelectual con esta mujer, a quien ayudó a encontrar un puesto adecuado.

Weierstrass estaba muy preocupado por el rigor matemático. Sus altos estándares quedaron impresos para la generación siguiente y provocaron una intensiva investigación sobre los fundamentos de la matemática, como la construcción del sistema de números reales. Los estudios de convergencia de Weierstrass lo llevaron a distinguir diferentes tipos, lo que provocó la investigación en varias topologías para espacios de funciones. Estudió el concepto de convergencia uniforme, que preserva la continuidad, e ideó varias pruebas para la convergencia de series y productos infinitos. Su enfoque de publicación fue cuidadoso y metódico, por lo que sus publicaciones fueron pocas pero extremadamente profundas y exactas.

Weierstrass continuó enseñando hasta 1890. Sus últimos años se dedicaron a publicar los trabajos recopilados de Jakob Steiner y Carl Jacobi. Murió de neumonía el 19 de febrero de 1897 en Berlín, Alemania. Sus contribuciones a la matemática, en particular al análisis real y complejo, fueron extensas y de gran alcance, lo que le valió el epíteto de «padre del análisis moderno». Su influencia también se extendió a través de la gran cantidad de estudiantes talentosos a quienes dirigió y que además desarrolló sus ideas en varias nuevas direcciones. Desde sus humildes comienzos como profesor de secundaria, Weierstrass logró grandes cosas para el campo de la matemática.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

John Wallis fue el mejor matemático inglés de su tiempo; de hecho, es el primer matemático británico importante del siglo XVII. No solo estimuló el estudio de la matemática, convirtiéndolo en un tema atractivo para otros, sino que influyó directamente en Sir Isaac Newton a través de sus primeros descubrimientos en el área del cálculo diferencial.

John Wallis nació el 23 de noviembre de 1616 en Ashford, Inglaterra. Su padre, también llamado John Wallis, era un ministro ampliamente respetado en Ashford. La madre de Wallis, Joanna Chapman, era la segunda esposa del padre de Wallis, y Wallis fue el tercero de cinco hijos. El padre de Wallis murió cuando Wallis tenía seis años.

La educación temprana de Wallis fue en Ashford, pero cuando la peste golpeó, su madre lo envió a la escuela primaria de James Movat en 1625. Primero mostró su potencial allí, entrenando tanto su memoria como su comprensión. A lo largo de la vida, Wallis fue capaz de lograr grandes hazañas de cálculo mental, incluso calculando en su mente raíces cuadradas de números irracionales. Luego, Wallis asistió a la escuela de Martin Holbeach en Felsted de 1631 a 1632, donde dominó el griego, el latín y el hebreo. Aunque aprendió lógica allí, no recibió capacitación en matemática hasta que su hermano le enseñó las reglas de la aritmética durante unas vacaciones de Navidad. El tema le atraía como una distracción, pero no se dedicaba formalmente a la matemática por entonces.

Wallis luego fue al Emanual College, Cambridge, en 1632, donde estudió ética, metafísica, geografía, astronomía y medicina. Más tarde defendió la nueva teoría de su maestro Glisson sobre la circulación de la sangre en debate público. Wallis completó su licenciatura en 1637 y su maestría en 1640. Luego fue ordenado y sirvió como capellán en varios puestos en los próximos años.

La carrera de Wallis dio un giro cuando descifró con éxito un mensaje realista codificado en solo dos horas. Esto lo hizo popular entre los parlamentarios, y Wallis continuó brindándoles servicio como criptógrafo durante la Guerra Civil. Como recompensa por su trabajo, Wallis recibió el cuidado de la iglesia de San Gabriel de Fenchurch Street en Londres en 1643. Su madre murió ese año, dejando a Wallis una herencia considerable.

Wallis transitó brevemente con una beca en Cambridge en 1644, pero se vio obligado a abandonar esto cuando se casó con Susanna Glyde en 1645. En Londres comenzó a reunirse regularmente con un grupo de científicos interesados en discutir medicina, geometría, astronomía y mecánica; Este grupo más tarde se convirtió en la Royal Society. A través de las reuniones se encontró con la obra Clavis Mathematica de William Oughtred en 1647, que devoró en unas pocas semanas. Este trabajo estimuló el amor de Wallis por la matemática y lo alentó a comenzar sus propias investigaciones.

Wallis primero escribió su Treatise on Angular Sections y descubrió métodos para resolver ecuaciones de grado cuatro. En 1649 Oliver Cromwell lo nombró para la cátedra de geometría saviliana en Oxford; sus oponentes sostuvieron que obtuvo el puesto por razones políticas, aunque parece que el nombramiento estaba justificado, basado en el servicio excepcional que Wallis brindó. Wallis ocupó el cargo durante más de 50 años, hasta su muerte; también fue nombrado guardián de los archivos de la universidad en 1657. En 1648 Wallis discrepó públicamente con la moción para ejecutar a Carlos I. Como resultado, Carlos II recompensó a Wallis cuando se restableció la monarquía: su nombramiento en la silla saviliana continuó, y también se convirtió en capellán real.

La principal contribución matemática de Wallis radica en su trabajo sobre los fundamentos del cálculo. Primero estudió el trabajo de Johannes Kepler y René Descartes, y luego extendió sus primeros resultados. Su Arithmetica Infinitorum de 1657 establece un desarrollo infinito del producto para la mitad del número pi, que Wallis descubrió en el curso del  cálculo de una determinada integral. Wallis descubrió cómo integrar funciones de la forma 1 - x^2 elevadas a una potencia entera, y extendió sus reglas a potencias fraccionarias mediante interpolación, basándose en las nociones de continuidad de Kepler. Su trabajo en esta área influiría más tarde en Newton, quien llevó los conceptos básicos del cálculo a un grado mucho mayor.

Link de interés

El Tract on Conic Sections de Wallis de 1655 presentaba parábolas y círculos como conjuntos de puntos que satisfacen ecuaciones algebraicas abstractas. Este enfoque, familiar para el lector moderno, difiere de la definición clásica, que describe estas curvas como la intersección de planos inclinados con un cono (se trata de secciones cónicas). Así, el estilo de Wallis recordaba la geometría analítica de Descartes. El Treatise of Algebra de 1685 de Wallis muestra su aceptación de las raíces negativas y complejas. Aquí Wallis resuelve muchas ecuaciones algebraicas y proporciona una gran cantidad de material histórico. Restauró algunos de los textos griegos antiguos, incluidas las obras de Aristarco de Samos y Arquímedes de Siracusa.

Wallis, además de su obra matemática, escribió sobre una variedad de otros temas: etimología, lógica y gramática, entre otros. Se involucró en una intensa disputa con el filósofo Thomas Hobbes, quien en 1655 afirmó haber cuadrado el círculo, lo que equivalía a descubrir un número racional cuyo cuadrado sea el número pi. Wallis refutó esta falsa afirmación públicamente, y siguió una disputa bastante desagradable que terminó solo cuando Hobbes murió.

Wallis dormía mal, tal vez porque su mente activa no lograba descansar fácilmente. Murió el 28 de octubre de 1703 en Oxford, Inglaterra. Es recordado principalmente por su trabajo sobre los fundamentos del cálculo, que influyó en matemáticos posteriores como Newton; sin embargo, sus trabajos matemáticos se extendieron también a la geometría y el álgebra. También es notable que Wallis fue el primer gran matemático inglés; no tenía predecesores ni maestros, pero a su paso la matemática se convirtió en un tema más popular.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Vito Volterra ayudó a extender las ideas del cálculo diferencial e integral de conjuntos a espacios de funciones. Su trabajo en biología también contribuyó a desarrollar conceptos matemáticos, como los vinculados a las ecuaciones diferenciales parciales, que influyeron en las relaciones depredador-presa. Es más famoso por su trabajo en ecuaciones integrales, produciendo las «ecuaciones integrales del tipo Volterra», que se aplicaron ampliamente a problemas mecánicos.

Vito Volterra nació el 3 de mayo de 1860 en Ancona (una ciudad en los Estados Pontificios de Italia) en una familia pobre. Su padre murió cuando Volterra tenía solo dos años y se desconoce su formación inicial. Se interesó por la matemática después de leer Geometry de Adrien-Marie Legendre a los 11 años, y dos años más tarde comenzó a estudiar el problema de los tres cuerpos, una pregunta destacada en la teoría de los sistemas dinámicos.

Volterra asistió a conferencias en Florencia y luego se matriculó en Pisa en 1878; allí estudió bajo la dirección de Enrico Betti, y obtuvo su doctorado en 1882 con una tesis sobre hidrodinámica. Betti murió al año siguiente, y Volterra lo sucedió como profesor de matemática en la Universidad de Pisa. Luego sirvió tanto en Turín como en Roma.

Volterra fue el primer matemático en concebir lo que más tarde se conocería como «funcional», una función de funciones a valor real. Un ejemplo de funcional (esta terminología fue introducida posteriormente por Jacques Hadamard) es la operación de integración, que produce un valor real para cada función de entrada. Volterra pudo extender los métodos integrales de Sir William Rowan Hamilton y Carl Jacobi para ecuaciones diferenciales a otros problemas de mecánica, y desarrolló un cálculo funcional completamente nuevo para realizar los cálculos necesarios. Hadamard, Maurice René Fréchet y otros pensadores más tarde desarrollaron esta idea original.

De 1892 a 1894 Volterra pasó a tratar ecuaciones diferenciales parciales, investigando la ecuación de la onda cilíndrica. Sus resultados más famosos fueron en el área de ecuaciones integrales, que relacionan las integrales de varias funciones desconocidas. Después de 1896, Volterra publicó varios artículos en esta área; estudió lo que se llegó a conocer como «ecuaciones integrales del tipo Volterra». Pudo aplicar su análisis funcional a estas ecuaciones integrales con considerable éxito.

A pesar de su edad, Volterra se unió a la fuerza aérea italiana durante la Primera Guerra Mundial, ayudando con el desarrollo de dirigibles en armas de guerra. Luego regresó a la Universidad de Roma. Promovió la colaboración científica y luego recurrió a las ecuaciones depredador-presa de biología, estudiando la curva logística. En 1922, el fascismo se extendió por Italia y Volterra luchó con vehemencia contra esta ola de opresión como miembro del parlamento italiano. En 1830 los fascistas tomaron el control y Volterra se vio obligado a huir de Italia. Pasó el resto de su vida en el extranjero en Francia y España. Sin embargo, regresó a Italia antes de su muerte el 11 de octubre de 1940 en Roma.

Volterra fue importante como fundador del análisis funcional, que ha sido una de las ramas más aplicadas de las matemáticas en el siglo XX. Las ecuaciones integrales se han empleado con éxito para resolver muchos problemas científicos, y el trabajo de Volterra produjo un gran avance en el conocimiento de estas ecuaciones.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »