Feeds:
Entradas
Comentarios

Archive for the ‘Biografías’ Category

Abraham de Moivre fue un influyente matemático francés que dio algunos de los pasos iniciales importantes en probabilidad y estadística. Fue contemporáneo de Sir Isaac Newton y participó en el debate de la prioridad del cálculo. Además, produjo avances en geometría analítica e hizo algunos descubrimientos elegantes en el análisis complejo. 

Abraham de Moivre nació el 26 de mayo de 1667, en Vitry, Francia, en una familia protestante, y más tarde en la vida fue perseguido por sus creencias religiosas. Su educación temprana fue en una academia protestante en Sedan. En 1682 estudió lógica en la escuela de Saumur, y dos años más tarde vino a París para estudiar matemática en el Collège de Harcourt.

En 1685 se revocó el Edicto de Nantes (un decreto de 1598 que otorgaba a los protestantes franceses la libertad de adorar a Dios como les plazca), lo que significó una reanudación de las hostilidades hacia los hugonotes. De Moivre huyó a Inglaterra, donde intentó sin éxito conseguir un puesto como profesor de matemática. En cambio, se convirtió en un tutor privado, una profesión que ejerció hasta el final de su vida. Mientras tanto, de Moivre continuó sus propias investigaciones privadas en el área de la geometría analítica, pero hizo una marca más significativa en el campo de la probabilidad. Estudió los juegos básicos de azar y, a partir de su trabajo, formuló la primera versión, la más básica, del teorema del límite central, que fue el resultado más importante de la probabilidad y la estadística.

El trabajo de De Moivre en probabilidad se resumió en su libro de 1718, La doctrina del azar. Este trabajo fue bien recibido por la comunidad científica y procuró avances en gran medida en el conocimiento de la probabilidad y la estadística. Las generalizaciones de su primer teorema del límite central se convertirían luego en una piedra angular en la teoría de la estimación estadística; el teorema del límite central se usaría para calcular las probabilidades de estadísticas como la media muestral. De Moivre introdujo por primera vez el concepto de independencia estadística, que ha sido un concepto crucial para la inferencia estadística hasta el día de hoy. Exploró sus nuevos conceptos a través de varios ejemplos de juegos de dados, pero también investigó las estadísticas de mortalidad y fundó la ciencia actuarial como un tema estadístico.

Su posterior Miscellanea Analytica de 1730 contenía la famosa fórmula de Stirling. Esta fórmula se ha atribuido erróneamente a James Stirling, quien generalizó el resultado original de Moivre. De Moivre utilizó esta fórmula para obtener la aproximación de la distribución en forma de campana de la distribución binomial. 

De Moivre también es famoso por su trabajo en el análisis complejo: da una expresión para potencias superiores de ciertas funciones trigonométricas. De hecho, un número complejo arbitrario podía expresarse con funciones trigonométricas; por lo tanto, fue capaz de conectar la trigonometría al análisis.

A pesar de su pobreza y sus orígenes franceses, de Moivre fue elegido miembro de la Royal Society en 1697, y en 1710 se le pidió que resolviera una disputa acalorada entre Newton y Gottfried Leibniz. Ambos hombres afirmaron haber sido los inventores originales del cálculo, pero debido a la tardanza en su publicación y la distancia de sus países nativos (Newton era británico y Leibniz era alemán), había cierta confusión sobre cuál de ellos tenía prioridad. De Moivre ya era amigo de Newton, y fue seleccionado para perjudicar favorablemente el veredicto hacia los ingleses; como se esperaba, de Moivre falló a favor de Newton. 

De Moivre murió en escasez financiera el 27 de noviembre de 1754 en Londres. Algunos dijeron que predijo la fecha de su propia muerte, habiendo observado que su sueño se alargaba constantemente 15 minutos cada noche. Es un personaje importante en la historia de la matemática, especialmente por su trabajo pionero en probabilidad, estadística y ciencia actuarial. En estas áreas mostró la mayor originalidad, pero fue un excelente versátil analista, y su compleja fórmula de variables tiene una importancia clásica para el tema.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Anuncios

Read Full Post »

August Möbius fue un excelente matemático, pionero de muchas ideas en topología, el estudio de mapas continuos que actúan sobre superficies de alta dimensión. Este campo de la matemática se estudió poco a poco a principios del siglo XIX y, de hecho, solo recibiría una investigación sistemática por parte de Henri Poincaré, Luitzen Egbertus Jan Brouwer y otros a principios del siglo XX. El trabajo de Möbius presentó las primeras investigaciones de orientación, superficies unilaterales y coordenadas homogéneas.

August Möbius nació el 17 de noviembre de 1790 en Schulpforta, Alemania. Su padre, Johann Heinrich Möbius, era un instructor de baile que murió cuando Möbius tenía solo tres años. Fue criado por su madre, descendiente de Martín Lutero, y fue educado por ella hasta los 13 años. Möbius siguió estudiando en la universidad local y se matriculó en la Universidad de Leipzig en 1809.

En Leipzig, Möbius siguió la preferencia de su familia de que estudiara leyes, pero después de su primer año abandonó este programa para dedicarse a la matemática, la física y la astronomía. Allí Karl Mollweide, un astrónomo con inclinaciones matemáticas, influyó en Möbius. En 1813 viajó a la Universidad de Gotinga para estudios de posgrado, y fue enseñado por el mismo Carl Friedrich Gauss. Como resultado de tener este gran mentor, Möbius adquirió una sólida formación en matemática y astronomía. En 1815, Möbius completó su tesis doctoral, que trataba de la ocultación de las estrellas fijas, y luego comenzó su investigación posdoctoral. Aunque su trabajo en este momento estaba en el campo de la astronomía, tenia un alto sabor matemático.

Evitando la posibilidad de ser reclutado en el ejército prusiano, Möbius completó su segunda tesis sobre ecuaciones trigonométricas, y pronto fue nombrado profesor de astronomía en Leipzig en 1816. El avance de la carrera de Möbius llegó lentamente, esencialmente debido a su pobre capacidad para impartir clases, aunque su trabajo matemático fue de gran calidad y originalidad.

Möbius trabajó de manera silenciosa y constante en una variedad de proyectos matemáticos, produciendo trabajos de gran calidad e integridad. Además de sus artículos sobre mecánica celeste y principios astronómicos, Möbius escribió sobre geometría proyectiva, teoría de números, topología y poliedros. Su trabajo clásico sobre geometría analítica de 1827 introdujo las coordenadas homogéneas (una forma de describir superficies proyectivas) y la red de Möbius (una cierta configuración en el espacio proyectivo). Esta investigación fue fundamental para estudios más modernos en geometría proyectiva. La función de Möbius y la fórmula de inversión de Möbius son significativas en el estudio de los números primos y la factorización en la teoría de números. Pero en el incipiente campo de la topología, Möbius demostró su genio creativo, con investigaciones innovadoras de superficies de un solo lado y el tema de la orientación (la determinación de las direcciones en el sentido de las agujas del reloj y en el sentido contrario a las agujas del reloj sobre una superficie). En particular, redescubrió la llamada banda de Möbius en 1858 (previamente había sido explorada por Johann Listing). Este objeto es esencialmente una tira de papel torcida que tiene un solo lado. 

En 1844, Möbius se convirtió en profesor titular en Leipzig. Mientras tanto, asumió tareas astronómicas, supervisando la reconstrucción del observatorio local desde 1818 hasta 1821. Se casó en 1820 y tuvo una hija y dos hijos. También en 1844 interactuó brevemente con Hermann Günter Grassmann, cuyo trabajo sobre topología y geometría algebraica fue bastante similar al de Möbius. Murió el 26 de septiembre de 1868 en Leipzig, Alemania.

Möbius es quizás más conocido por la banda  de Möbius y la fórmula de inversión de Möbius, aunque su trabajo más importante fue probablemente en geometría proyectiva. Su trabajo se distinguió por su originalidad y cohesión, así como por su profundidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

La teoría de la relatividad especial de Albert Einstein planteaba el espacio y el tiempo como una estructura unificada con su propia geometría. El trabajo de Hermann Minkowski, basado en las teorías geométricas generales formuladas por Bernhard Riemann, formó la base matemática para este modelo del universo.

Hermann Minkowski nació el 22 de junio de 1864 en Alexotas, parte del Imperio ruso. Ahora la ciudad es conocida como Kaunas, y es parte de Lituania. Minkowski realizó estudios matemáticos en las universidades de Berlín y Königsberg, y recibió su doctorado en esta última institución en 1885. Después de graduarse enseñó en varias escuelas, entre ellas Bonn, Zurich y Königsberg. 

Minkowski aceptó una cátedra en la Universidad de Göttingen en 1902, donde permaneció el resto de su carrera. Allí aprendió física matemática de David Hilbert, y completó el resto de su educación científica. Su principal contribución a la matemática llegó al darse cuenta de que el trabajo de Einstein en física podría formularse matemáticamente como un espacio no euclidiano (es decir, no plano) que podría describirse completamente a través de la descripción métrica de variedades  de Riemann. Minkowski veía el tiempo y el espacio como un continuo que no podía considerarse como formalmente independiente; la dependencia del tiempo y el espacio se desarrolló a través del estudio de la relatividad especial de Einstein, y Minkowski proporcionó la construcción geométrica apropiada que ilustró esta dependencia. La variedad de cuatro dimensiones de Minkowski fue resumida por una métrica de espacio-tiempo en cuatro dimensiones, más tarde conocida como la métrica de Lorentz. Este continuo espacio-tiempo a veces se denomina espacio de Minkowski, en reconocimiento a sus contribuciones a este campo, que se resumen en su Espacio y Tiempo de 1907.

Además, Minkowski desarrolló un tratamiento de electrodinámica de cuatro dimensiones, expuesto en su Zwei Abhandlungen über Grundgleichungen der Elektrodynamik de 1909. Es menos conocido por su trabajo en matemática pura, a la que dedicó la mayor parte de su atención. Minkowski investigó formas cuadráticas y fracciones continuas, y descubrió una importante desigualdad en el análisis. Hizo descubrimientos originales sobre la geometría de los números, lo que lo llevó al estudio de problemas de empaque, la pregunta de cuántos objetos de una forma dada pueden ser empaquetados en un espacio dado. Los problemas de embalaje se han convertido en un área importante de investigación en el siglo XX, debido a su atractiva relación con la intuición y aplicaciones fácilmente realizables. 

Minkowski murió el 12 de enero de 1909, en Gotinga, de una ruptura de apéndice. Su logro principal se basa en su fundamento del estudio matemático de los problemas de empaque, aunque es más famoso por sus contribuciones geométricas a la teoría de la relatividad especial. Estos primeros estudios de la relatividad especial llevaron a la promulgación de métodos matemáticos en la teoría general de la relatividad, desarrollada por Albert Einstein.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Older Posts »