Feeds:
Entradas
Comentarios

Archive for the ‘Historia de la Matemática’ Category

Anuncios

Read Full Post »

A principios del siglo XX, el campo de la probabilidad carecía de unidad y cohesión. Paul Lévy hizo contribuciones fundamentales a esta área, convirtiéndola en una de las principales divisiones de la matemática moderna. También desarrolló la teoría de las ecuaciones diferenciales parciales y el análisis funcional, impulsando estos campos del pensamiento.  

Paul Lévy nació el 15 de septiembre de 1886 en París, Francia. Pertenecía a una familia de matemáticos, incluidos su padre y su abuelo. Su padre, Lucien Lévy, fue examinador en la École Polytechnique. Paul Lévy fue un estudiante sobresaliente, que asistió al Lycée Saint Louis en París, donde ganó premios en matemática y ciencia. En sus exámenes de ingreso a la universidad, obtuvo el primer lugar en la École Normale Supérieur y el segundo lugar en la École Polytechnique. 

Eligió asistir a esta última institución y comenzó a publicar trabajos mientras aún era un estudiante universitario. En su primer artículo (1905) estudió series semi-convergentes. Lévy se graduó y pasó un año en el ejército antes de unirse a la École des Mines en 1907. Mientras estuvo allí, Lévy también asistió a conferencias de Charles-Émile Picard  y Jacques-Salomon Hadamard. Este último influyó mucho en la investigación de Lévy y lo alentó a inclinarse hacia el análisis funcional.  

En 1910, Lévy comenzó a investigar en el área del análisis funcional, y Picard, Henri Poincaré y Hadamard examinaron su tesis al año siguiente. Obtuvo su doctorado en 1912. Lévy se convirtió en profesor en la École des Mines en 1913 y, en 1920, se convirtió en profesor de análisis en la École Polytechnique. Durante la Primera Guerra Mundial, Lévy sirvió en el ejército francés y trabajó en problemas de balística matemática. 

Su trabajo sobre análisis funcional extendió el cálculo de variaciones a espacios funcionales y siguió las mismas líneas de pensamiento que las de Vito Volterra. Pero su mayor esfuerzo estuvo puesto en probabilidad, donde trabajó mucho durante muchos años. Lévy tomó prestadas muchas técnicas, desde el análisis hasta el ataque de problemas de probabilidad. En particular, trabajó en leyes de límites, la teoría de martingalas y las propiedades del movimiento browniano. Estas dos últimas áreas forman dos grandes ramas de la teoría de los procesos estocásticos, que se utilizan ampliamente en ingeniería, estadística y ciencias para modelar y resolver una variedad de problemas prácticos. 

Más allá de estos avances en probabilidad, Lévy también estudió la teoría de las ecuaciones diferenciales parciales y geometría. Extendió la transformada de Laplace y generalizó la noción de derivadas funcionales. Produjo varios textos que han sido ampliamente utilizados por los estudiantes de matemática. Lévy murió el 15 de diciembre de 1971 en París, Francia. 

Lévy hizo importantes contribuciones al análisis de probabilidades y al análisis funcional, que han sido dos de las áreas más importantes de la matemática para modelar problemas científicos reales en el siglo XX. Fue un pensador profundo que apreciaba la belleza de la matemática y su utilidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Leonardo da Vinci es una de las personas más famosas de la época medieval. Artista, ingeniero y científico, era diverso y profético. Hizo importantes contribuciones al arte, la anatomía, la tecnología, la mecánica, la geología y la matemática. 

Resultado de imagen para da vinci

Leonardo da Vinci nació el 15 de abril de 1452 en Empolia, Italia. Era el hijo ilegítimo de Piero da Vinci, un ciudadano florentino. Su madre era una niña campesina llamada Caterina. El padre de Leonardo pronto se casó con una respetable mujer italiana, Albiera di Giovanni Amadori. Leonardo recibió una educación rudimentaria, y mostró su talento para la música y el arte a una edad temprana. En 1467 fue aprendiz de Andrea del Verrocchio, con quien estudió pintura, escultura y mecánica. 

Leonardo completó algunas de sus primeras pinturas durante este tiempo, incluido el Bautismo de Cristo.

En 1482 partió para trabajar para el duque de Milán; en ese momento él ya era un experto en arquitectura, pintura y escultura, así como en ingeniería militar. Permaneció en Milán hasta 1499, tiempo durante el cual se interesó más en la física y la mecánica y en las propiedades de la luz. También aumentó su escasa educación matemática, estudiando latín y geometría al mismo tiempo. 

Leonardo formuló su teoría de la supremacía de la pintura sobre los principios matemáticos de la proporción y la perspectiva. Su interés en la proporción lo llevó a realizar más investigaciones en física y matemática. Algunos de sus primeros trabajos en matemática fueron bastante erróneos, ya que no tenía una comprensión adecuada del cálculo aritmético; un ejemplo es su afirmación de que la fracción 2/2 es la raíz cuadrada de 2, ya que afirma falsamente que 2/2 por 2/2 es 4/2. 

Sus otros proyectos durante el tiempo en Milán incluyen la física de la luz, la física de la visión y el problema del vuelo mecánico. Colaboró con el matemático Pacioli en la Divina proporción. Es probable que Leonardo haya leído los Elementos de Euclides de Alejandría antes de hacer los dibujos de este libro. Los cuadernos de Leonardo contienen pruebas de varias proposiciones en los Elementos, y es probable que su amigo Pacioli lo haya alentado y lo haya ayudado en su estudio de Euclides. 

Leonardo partió para Venecia después de que los franceses capturaron al duque de Milán, y más tarde regresó a Florencia. Sirvió brevemente con Cesare Borgia como ingeniero militar, y más tarde completó su famosa Mona Lisa.

De 1500 a 1506 realizó una investigación sobre anatomía humana y dedicó una mayor parte de su tiempo a la matemática y la mecánica. Después de completar su estudio de Euclides (Leonardo estaba especialmente interesado en el tratamiento de la proporción en el Libro X de los Elementos), comenzó su propia investigación sobre la equiparación. Estaba interesado principalmente en la cuadratura de las superficies curvilíneas (transformando estas regiones curvas en cuadrados con la misma área), aunque su método de prueba era a menudo mecánico más que estrictamente geométrico. Leonardo propuso varios métodos para cuadrar el círculo; estaba familiarizado con el método de Arquímedes  de Siracusa, pero rechazó la aproximación del número pi de este último por 22/7. Intentó mejorar la aproximación al inscribir un polígono de 96 lados en el círculo. 

Animado por su supuesto descubrimiento de la cuadratura del círculo el 30 de noviembre de 1504, realizó una investigación similar sobre duplicar cuadrados y cuadruplicar círculos. También se interesó en la duplicación del cubo (problema que ya había sido resuelto por Eratóstenes de Cirene hace siglos), insatisfecho por una solución reciente dada por Valla. Eventualmente, Leonardo concibió una solución que eliminó la necesidad de un aparato mecánico, y de ese modo pudo obtener aproximaciones extremadamente precisas para la raíz cúbica de dos. Sin embargo, no pudo proporcionar una prueba rigurosa de su método. 

Muchos de sus escritos matemáticos están incluidos en el Codex Atlanticus. Leonardo continuó investigando las propiedades de las superficies curvilíneas, como las porciones que quedan entre un círculo y un cuadrado o hexágono inscrito. También exploró la posibilidad del vuelo humano mediante el estudio de la anatomía de las aves, así como el movimiento del agua.

En 1506 regresó a Milán, donde sirvió bajo el mando del gobernador francés. En este último período de su vida, produjo algunos de sus mejores dibujos anatómicos, y sus esfuerzos científicos se extendieron a la hidrología, la geología, la meteorología, la biología y la fisiología humana. En todas estas áreas, sintió que la matemática tenía las claves del conocimiento y trató de formular leyes geométricas para estas disciplinas. Los franceses fueron expulsados ​​en 1513, y Leonardo se fue a Roma, esperando encontrar trabajo con el Papa León X; esto no se materializó, y volvió al servicio de Francia en 1516, trabajando con Francisco I. Sufrió un derrame cerebral en Amboise y murió el 2 de mayo de 1519.  

El enfoque de Leonardo para el estudio de la naturaleza no puede considerarse científico en el sentido moderno. Creía en la importancia de la investigación empírica, pero muchas de sus ideas eran puramente especulativas, sin un razonamiento sólido detrás de ellas. Por supuesto, muchos de sus conceptos fueron contribuciones brillantes también. En matemática, parece haber sido un aficionado. Ciertamente hizo algunos descubrimientos valiosos, y respetó profundamente el papel de la matemática en la investigación de la naturaleza. Pero muchas de sus obras tenían fallas profundas, y su enfoque de las pruebas era más típico de su identidad como artista. Además, sus trabajos matemáticos no han influido en el progreso posterior del pensamiento matemático. Su investigación geométrica sobre áreas curvilíneas desarrolló un aspecto del trabajo de Euclides, pero sus escritos no eran muy conocidos en su época y, por lo tanto, no ejercieron influencia sobre otros pensadores matemáticos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Older Posts »