Hermann Weyl, uno de los grandes matemáticos de principios del siglo XX, desarrolló con éxito las ideas de otros en teorías rigurosas. Sus documentos son notables por su originalidad y profundidad de conocimiento, y su trabajo ha ejercido una gran influencia en la investigación actual.
Hermann Weyl nació el 9 de noviembre de 1885 en Elmshorn, Alemania. Cuando era niño, asistió al Gymnasium en Altona e ingresó a la Universidad de Gotinga a los 18 años. Permaneció allí durante varios años estudiando matemática. Después de obtener su título, se convirtió en profesor en la Universidad de Zurich en 1913.
Weyl había estudiado con David Hilbert en Gotinga y seguramente fue uno de sus alumnos más talentosos. El primer trabajo importante de Weyl, que data de 1910, fue sobre la teoría espectral de las ecuaciones diferenciales, que era un área que Hilbert también estaba investigando. En 1911 comenzó a estudiar la teoría espectral de ciertos operadores en los llamados espacios de Hilbert. Sus métodos proporcionaron una idea geométrica de estos espacios abstractos y se convirtieron en técnicas importantes dentro del análisis funcional.
En 1916 Weyl publicó un famoso artículo sobre teoría analítica de números, que trata la distribución de ciertas secuencias especiales de números. Con un ingenio característico, dio una solución novedosa a preguntas no resueltas haciendo conexiones con la teoría de la integración. Sus técnicas han seguido siendo relevantes para la teoría aditiva de números.
Después de este trabajo en teoría de números, Weyl volvió a la geometría (anteriormente, en 1913, había dado una base rigurosa para la definición intuitiva de una variedad riemanniana). En 1915 atacó un problema relacionado con ciertas deformaciones de superficies convexas, y describió un método de demostración que finalmente resultaría fructífero. Weyl vió interrumpido su trabajo a raíz de la Primera Guerra Mundial, pero fue liberado del servicio militar en 1916. En Zurich trabajó con Albert Einstein y, en consecuencia, se interesó en la teoría general de la relatividad. Se propuso proporcionar una base matemática para las ideas físicas, descubriendo el concepto de conexión lineal. Élie-Joseph Cartan desarrolló aún más esta importante idea.
En la década de 1920, Weyl se interesó en los grupos de Lie, y sus artículos sobre este tema son probablemente los más importantes e influyentes. Parte del genio de su enfoque fue el uso de métodos topológicos sobre objetos algebraicos como los grupos de Lie. Sophus Lie había introducido los grupos de Lie como un nuevo e interesante campo de la matemática, pero Weyl avanzó mucho en esta rama a través de su nueva metodología.
Como matemático, Weyl creía en la importancia de las teorías abstractas, y creía que eran capaces de resolver problemas clásicos cuando se combinaban con un pensamiento cuidadoso y penetrante. Difirió con el formalista Hilbert en la filosofía de los fundamentos matemáticos, y en su lugar aceptó el intuicionismo de Luitzen Egbertus Jan Brouwer. Sin embargo, en muchos otros aspectos, mostró la influencia de Hilbert. En 1930 sucedió a Hilbert en Gotinga, pero decidió abandonar la Alemania nazi en 1933, llegando al Instituto de Estudios Avanzados de Princeton. Permaneció en los Estados Unidos hasta que se retiró en 1951. Dividió los últimos años de su vida entre Princeton y Zurich. Murió el 8 de diciembre de 1955.
Hermann Weyl realizó varias contribuciones significativas a la teoría de números, la geometría y las ecuaciones diferenciales. Cuando resolvía un problema difícil, a menudo ideaba una técnica completamente nueva para la demostración; Estos nuevos métodos generalmente se convirtieron en herramientas estándar o, a veces, condujeron a nuevas áreas de investigación. Su trabajo sobre la teoría de los grupos de Lie proporcionó una base para avances posteriores.
Fuente bibliográfica:
McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Pocos matemáticos pueden compararse con Bernhard Riemann en términos de creatividad y profundidad de conocimiento. No solo encontró la nueva disciplina de la geometría riemanniana que se volvería tan importante para la teoría de la relatividad general un siglo más tarde, sino que también avanzó significativamente en otros campos de la matemática, incluido el análisis complejo, la teoría de funciones elípticas, las ecuaciones diferenciales y la teoría de la integración y topología. Es quizás más famoso por descubrir la función zeta de Riemann, que es importante para la teoría analítica de números. Como las de muchos genios, las ideas de Riemann eran tan avanzadas que pocos podían aceptarlas inmediatamente; después de su temprana muerte, el impacto de su investigación comenzó a apreciarse.
Georg Friedrich Bernhard Riemann nació el 17 de septiembre de 1826 en Breselenz, Alemania. Su madre fue Charlotte Ebell, y su padre Friedrich Bernhard Riemann. Riemann mantuvo una estrecha relación con su padre, un ministro luterano, durante toda su vida. Fue el segundo de seis hijos. Su padre lo educó personalmente hasta que tenía 10 años, y en 1842 el niño ingresó en el Johanneum Gymnasium en Lüneburg. Era un buen alumno, pero aún no mostraba un talento extraordinario en la matemática. Aunque sus estudios principales fueron clásicos y teológicos, se interesó por la matemática después de devorar rápidamente un libro de teoría de números de Adrien-Marie Legendre.
En 1846, Riemann se matriculó en la Universidad de Göttingen, donde siguió estudiando matemática. Aunque Carl Friedrich Gauss enseñaba allí en ese momento, no reconoció el talento de Riemann, al igual que algunos de sus otros maestros. Al año siguiente, Riemann se trasladó a la Universidad de Berlín, donde pudo estudiar con Carl Jacobi y Peter Lejeune Dirichlet; este último fue especialmente influyente en Riemann, quien adoptó su enfoque intuitivo y no computacional para las ideas matemáticas. Gran parte del trabajo de Riemann carecía del rigor preciso común en ese momento: centró sus energías en desarrollar conceptos y marcos correctos para comprender la matemática. Durante este tiempo formuló los principios básicos de su teoría de variables complejas.
Riemann regresó a Göttingen en 1849 para un trabajo de doctorado, y presentó su tesis, dirigida bajo la supervisión de Gauss, en 1851. Este trabajo presenta los objetos geométricos que se conocieron como superficies de Riemann. Fue influenciado por ideas de la física y la topología, y aplicó estas técnicas en su análisis de estas superficies, basándose en la teoría más básica de las variables complejas de Augustin-Louis Cauchy. Algunos de sus resultados se probaron utilizando una técnica variacional conocida como principio de Dirichlet (Riemann atribuyó el método a Dirichlet, aunque Gauss y otros lo habían desarrollado anteriormente). Esta tesis fue sorprendente por su originalidad, incluso el soberano Gauss quedó impresionado.
Para su trabajo postdoctoral, Riemann comenzó a investigar la representación de funciones en términos de una base de funciones trigonométricas (análisis de Fourier); en el curso de su investigación, desarrolló una rigurosa teoría de la integración, construyendo lo que más tarde se conocería como la integral de Riemann de una función. Estaba trabajando en Göttingen, y Gauss le exigió que diera una conferencia sobre geometría para completar su beca; la conferencia de Riemann sobre geometría más tarde se hizo muy famosa, ya que estableció los principios básicos y las ideas claves detrás de la teoría de la geometría diferencial. Esta conferencia de 1854 desarrolló conceptos generales de espacio, dimensión, líneas rectas, métricas, ángulos y lugares tangentes para superficies curvas. El resultado de esta exposición notablemente original fue el establecimiento de la geometría diferencial como un campo importante de investigación matemática (hubo trabajos anteriores sobre geometría diferencial, pero Riemann plantó las ideas principales que continuarían guiando el tema a lo largo del próximo siglo), que luego resultó tener una aplicación notable a la teoría general de la relatividad: Albert Einstein, a principios del siglo XX, describió la fuerza de la gravedad como esencialmente una curvatura del espacio, y la teoría geométrica de Riemann fue la base matemática perfecta para esta importante nueva rama de la física.
Esta conferencia probó el concepto fundamental de espacio con una profundidad notable, y pocos científicos y matemáticos pudieron apreciar el genio extraordinario del pensamiento penetrante de Riemann; quizás solo Gauss fue capaz de comprender verdaderamente el significado del nuevo paradigma. Riemann luego pasó a la teoría de las ecuaciones diferenciales parciales, tema sobre el que dio un curso con poca asistencia. Obtuvo una cátedra en Göttingen en 1857, el mismo año en que publicó la teoría de las funciones abelianas. Este trabajo investiga más a fondo las propiedades topológicas de las superficies de Riemann, así como los llamados problemas de inversión. Aunque otros matemáticos, incluido Karl Weierstrass, trabajaban en esta área, el trabajo de Riemann fue tan amplio que se convirtió en un pensador destacado en esta rama de la matemática. Riemann utilizó nuevamente el principio de Dirichlet para sus resultados, y Weierstrass declaró que no era válido para las aplicaciones de Riemann. La búsqueda de una prueba alternativa durante las siguientes décadas condujo a varios otros desarrollos algebraicos fructíferos; David Hilbert finalmente dio la formulación correcta y la prueba de los resultados de Riemann a finales de siglo. Como resultado de la correcta crítica de Weierstrass, muchos matemáticos abandonaron las teorías desarrolladas por Riemann, quien sostuvo que eran ciertas.
En 1858, Riemann recibió la visita de Enrico Betti, quien importó las ideas topológicas de Riemann a su propio trabajo. El año siguiente murió Dirichlet, y Riemann lo reemplazó como presidente de matemática en Göttingen; también fue elegido para la Academia de Ciencias de Berlín a través de las fuertes recomendaciones de Ernst Eduard Kummer y Weierstrass. La siguiente área de investigación de Riemann fue la teoría de números: exploró la función zeta, ya definida por Leonhard Euler, extendiéndola primero al plano complejo. Esta función zeta da la suma de varias series infinitas y ya se sabía que estaba relacionada con el conjunto de números primos. El trabajo de Riemann amplió enormemente el conocimiento de esta función, así como sus aplicaciones; la famosa hipótesis de Riemann, que sigue sin resolverse hoy en día, establece que todas las raíces no triviales de la función zeta se encuentran en la línea en el plano complejo definida por los números complejos cuya parte real es igual a un medio. Esta extraña conjetura ha sido ampliamente verificada numéricamente, pero una prueba completa ha escapado a los esfuerzos concertados de cientos de matemáticos. La función zeta tiene varias aplicaciones para la teoría numérica analítica, como estimar el número de primos menores que un entero dado.
Riemann sufrió de mala salud durante toda su vida. Su constitución débil más tarde impediría su investigación y le quitaría la vida prematuramente. Se casó con Elise Koch en 1862, pero poco después contrajo un resfriado y luego desarrolló tuberculosis. Pasó gran parte de su tiempo en los próximos años en el extranjero, en Italia, con la esperanza de que el clima más suave alivie su enfermedad. Regresó a Göttingen en 1865, y su salud declinó rápidamente a partir de entonces; viajó a Italia en 1866 nuevamente por razones de salud, pero no se recuperó. Murió el 20 de julio de 1866 en Selasca, Italia.
Riemann fue fácilmente uno de los matemáticos más influyentes y creativos del siglo XIX y, de hecho, de toda la historia. Afectó de manera significativa la geometría y el análisis complejo sobre todo, proporcionando esencialmente el marco a través del cual se estudian estos temas hoy. Y las preguntas y los problemas profundos que abordó en el campo de la geometría son extremadamente relevantes para las concepciones modernas del universo físico. Su trabajo en teoría de números ha estimulado un esfuerzo de investigación sin igual: la investigación de la función zeta de Riemann debe ser uno de los campos de actividad matemática más concurridos. Gauss estaría de acuerdo en que Riemann fue sin duda uno de los mejores matemáticos que este mundo ha visto.
En Septiembre del año pasado (2018) ocurrió un hecho de gran trascendencia en Heidelberg Laureate Forum. El matemático Michael Atiyah (1929-2019) anunciaba haber demostrado finalmente la Hipótesis de Riemann. Su conferencia fue vista por decenas de miles de personas por internet y numerosos ciudadanos mostraron su entusiasmo en Twitter, alabando al octogenario experto: «Los héroes a veces no llevan capa».
Fuente bibliográfica:
McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Emmy Noether fue una matemática excepcional que pudo superar los obstáculos étnicos y de género para hacer contribuciones sobresalientes al álgebra abstracta. Es mejor conocida por sus primeros trabajos sobre la teoría de anillos. Sus resultados sobre ideales en anillos fueron fundamentales para el desarrollo posterior del álgebra moderna.
Emmy Noether nació el 23 de marzo de 1882 en Erlangen, una ciudad en la provincia alemana de Baviera, en el seno del hogar conformado por Max Noether, un notable matemático de la Universidad de Erlangen, e Ida Kaufmann. Sus dos padres eran de ascendencia judía, lo que más tarde sería una fuente de persecución para Noether. Emmy era la mayor de cuatro hijos, sus hermanos menores eran todos varones.
Noether estudió en Höhere Töchter Schule en Erlangen desde 1889 hasta 1897, donde estudió idiomas y aritmética. Originalmente tenía la intención de convertirse en profesora de idiomas y se certificó en 1900 para enseñar inglés y francés en las escuelas bávaras. Sin embargo, siguió en cambio el difícil camino de la matemática y comenzó a asistir a conferencias en la Universidad de Erlangen en 1900. Allí se permitía que las mujeres estudiaran de manera no oficial, y Noether tenía que obtener permiso para asistir a clases. También estudió en Göttingen con David Hilbert y Felix Klein.
En 1904 Noether pudo matricularse en Erlangen, y obtuvo su doctorado en 1907 bajo la dirección de Paul Gordan. Su tesis construyó varios invariantes algebraicos, lo cual fue un enfoque constructivo del teorema de base de Hilbert de 1888. Incapaz de progresar más en una carrera académica debido a su género, Noether pasó los próximos años ayudando a su padre en su investigación. También se volvió hacia el enfoque más abstracto de Hilbert para el álgebra e hizo muchas contribuciones propias. Poco a poco ganó el reconocimiento de la comunidad matemática a través de sus publicaciones, y en 1915 Hilbert y Klein la invitaron a Göttingen como profesora. Es un testimonio de su talento que Hilbert y Klein lucharan duramente con la administración de la universidad para otorgarle un puesto, que finalmente obtuvo en 1919.
El primer trabajo de Noether en Göttingen fue un teorema de física teórica, a veces denominado Teorema de Noether, que relaciona las simetrías de las partículas con los principios de conservación. Albert Einstein más tarde elogió esta contribución a la relatividad general por su penetración y valor. Después de 1919, Noether pasó de la teoría invariante a los ideales, que son ciertos subconjuntos especiales de anillos, una generalización del espacio euclidiano visto desde una perspectiva algebraica. Uno de sus artículos más importantes, publicado en 1921, dio una descomposición fundamental de estos ideales. Su trabajo sobre la teoría de anillos fue de gran importancia para desarrollos posteriores en álgebra moderna. En 1927 investigó los anillos no conmutativos (anillos en los que no se cumple la ley conmutativa). Estos espacios algebraicos se han vuelto muy importantes para la física teórica, donde las interacciones entre partículas siguen leyes no conmutativas.
Por su destacada labor, Noether recibió mucho reconocimiento. En 1932 compartió con Emil Artin el Premio Memorial Alfred Ackermann-Teubner por el avance de los conocimientos matemáticos. Sin embargo, su etnia judía la convirtió en un objetivo de los prejuicios nazis en 1933, y se vio obligada a huir a los Estados Unidos, donde dio una conferencia en el Institute for Advanced Study de Princeton.
Noether murió el 14 de abril de 1935 en Bryn Mawr, Pensilvania. Sus colegas la reconocieron como una matemática excepcional que hizo mucho para mejorar el conocimiento del álgebra. Sus resultados fundamentales en la teoría de anillos e invariantes dejaron un legado perdurable en el álgebra abstracta, y su éxito en la presencia de la discriminación y la persecución atestigua su enérgica determinación y su firme carácter.
Fuente bibliográfica:
McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.