Feeds:
Entradas
Comentarios

Posts Tagged ‘Arquímedes’

El siglo XVIII estaba relativamente desprovisto de talento matemático en comparación con la riqueza intelectual de los años 1600; sin embargo, Daniel Bernoulli fue uno de los pocos genios raros de ese tiempo, haciendo importantes contribuciones a la medicina, la matemática y las ciencias naturales. En particular, sus trabajos en los aspectos mecánicos de la fisiología, las series infinitas, la mecánica racional, la hidrodinámica, los sistemas oscilatorios y la probabilidad le han ganado gran renombre como científico excepcional.

Daniel Bernoulli nació el 8 de febrero de 1700 en Groningen, Holanda, en la conocida familia Bernoulli: su padre era el famoso matemático Johann Bernoulli, que era entonces profesor en Groningen, y su madre era Dorothea Falkner, miembro de una familia suiza. Daniel Bernoulli estaba cerca de su hermano mayor Nikolaus, pero más tarde cayó víctima de la celosa competitividad de su padre. En 1705 Johann Bernoulli reubicó a la familia en Basilea, haciéndose cargo de la cátedra de matemática recientemente ocupada por su difunto hermano Jakob. Daniel Bernoulli comenzó el estudio de la lógica y la filosofía en 1713 y aprobó su bachillerato en 1716. Mientras tanto, estudió matemática bajo la supervisión de su padre y Nikolaus. Daniel Bernoulli no estaba destinado a los negocios, como testificó un fracasado aprendizaje en el comercio; en cambio, continuó sus estudios de Basilea en medicina, viajando después a Heidelberg (1718) y Estrasburgo (1719) para perseguir el conocimiento. Al año siguiente regresó a Basilea, y obtuvo su doctorado en 1721 con la disertación De respiratione (De la respiración).

Su solicitud para la cátedra de anatomía y botánica fue negada, y tampoco pudo obtener la cátedra de lógica. En 1723 viajó a Venecia para continuar sus estudios médicos bajo Michelotti. Su publicación de Exercitationes mathematicae en 1724 le valió la fama de recibir una oferta de la Academia de San Petersburgo, y se quedó en Rusia de 1725 a 1732, conociendo a Leonhard Euler. Su querido hermano Nikolaus murió repentinamente, y el clima severo no fue a gusto de Bernoulli; estos factores alentaron a Bernoulli a regresar a casa. Después de tres aplicaciones fallidas a Basilea, obtuvo la cátedra de anatomía y botánica en 1732.

El período ruso fue muy fructífero para Bernoulli. Durante este tiempo realizó importantes trabajos en hidrodinámica, teoría de las oscilaciones y probabilidad. Su regreso a Basilea se convirtió en una gira por Europa, donde fue recibido cordialmente por numerosos estudiosos. En este momento su padre competía con Bernoulli por la prioridad del trabajo sobre hidrodinámica llamado Hydrodynamica; completado en 1734 y publicado en 1738, la Hydraulica de su padre  era anterior a 1732.

En el campo de la medicina, al que se vio obligado a trabajar durante algunos períodos de su vida, Bernoulli volvió su intelecto hacia los aspectos mecánicos de la fisiología. Su disertación de 1721 fue una revisión de la mecánica de la respiración, y un artículo de 1728 abordó la mecánica de la contracción muscular, prescindiendo de la noción de fermentación en los glóbulos sanguíneos. Bernoulli también determinó la forma y ubicación de la entrada del nervio óptico en el bulbo, y dio una conferencia sobre el cálculo del trabajo realizado por el corazón; más tarde estableció la cantidad máxima de trabajo (actividad durante un período sostenido) que un ser humano podía realizar en un día.

Sin embargo, los intereses de Bernoulli fueron absorbidos por problemas matemáticos motivados por cuestiones científicas. Sus cuatro volúmenes de Exercitationes  mathematicae  tratan una variedad de temas: el juego del faro, el flujo de agua, las ecuaciones diferenciales y las lúnulas (figuras delimitadas por dos arcos circulares). Posteriormente investigó series divergentes. Bernoulli obtuvo sumas para series trigonométricas e investigó la teoría de las fracciones continuas infinitas. 

Su contribución a la mecánica estaba en las áreas de oscilaciones de cuerpos rígidos y mecánica de cuerpos flexibles y elásticos; estas nuevas áreas fueron abordadas a fondo por los esfuerzos de colaboración de Bernoulli y Euler. Bernoulli explica el principio de la gravedad y el magnetismo, prescindiendo de la teoría del vórtice de René Descartes y Christiaan Huygens. La teoría de los cuerpos giratorios, el centro de la rotación instantánea y la conservación de la fuerza viva son algunas de sus otras contribuciones, así como la fricción de cuerpos sólidos. Obtuvo una amplia fama mediante su Hydrodynamica, donde da una historia de la hidráulica, fórmulas para la salida de un fluido, oscilaciones de agua en un tubo, teoría para maquinaria hidráulica (tales como bombas, incluido el tornillo de Arquímedes de Siracusa), movimientos de ” fluidos elásticos “(gases), y la derivación de la ecuación de Bernoulli para corrientes estacionarias. Este libro también contiene la determinación de la presión sobre un contenedor causada por un fluido y la presión de un chorro de agua sobre un plano inclinado -puesto en práctica para propulsar barcos muchos años después.

Junto con Euler, Bernoulli dominó la mecánica de los cuerpos elásticos, derivando curvas de equilibrio para tales cuerpos en 1728. Determinó la curvatura de una banda elástica horizontal fijada en un extremo y definió los “modos simples” y las frecuencias de oscilación de un sistema con más de un cuerpo. Después de salir de San Petersburgo, la continua correspondencia de Bernoulli con Euler dio lugar a más literatura: las pequeñas vibraciones de una placa sumergida en agua y una varilla suspendida de un hilo flexible. Aquí destacó la diferencia entre las vibraciones simples y las compuestas. En trabajos escritos entre 1741 y 1743, Bernoulli trata las vibraciones transversales de las cuerdas elásticas, considerando una barra horizontal fijada a una pared vertical. Para derivar la ecuación de vibración, implementó la relación entre curvatura y momento. Su tratado de 1753 sobre las oscilaciones resultó en una descripción del movimiento general como la superposición de numerosas vibraciones únicas, dada por una serie trigonométrica infinita. Más tarde Bernoulli consideró las oscilaciones de los tubos de un órgano y las vibraciones de las cuerdas de grosor desigual.

Bernoulli también avanzó en la teoría de la probabilidad y la estadística; su obra más novedosa en esta área fue De mensura sortis (Sobre la medida del azar), que aborda un problema en las ganancias de capital, e introduce el concepto de una función de utilidad, descrita por Bernoulli como el valor moral de una cantidad de capital. En 1760 examinó un problema de mortalidad en las estadísticas médicas, dando una ecuación diferencial relacionando las variables relevantes. Más tarde utilizó un modelo de urna en aplicaciones a estadísticas de población, tratando de determinar la duración media del matrimonio para cada grupo de edad. Es interesante que Bernoulli utilice el cálculo infinitesimal en la probabilidad, dando un primer paso hacia la noción de una variable aleatoria continua y la teoría estadística de los errores.

En 1743 Bernoulli pasó a dar conferencias en fisiología, y en 1750 obtuvo finalmente la cátedra de física; continuó dando conferencias hasta 1776, mostrando fascinantes experimentos de física que atraían a una gran audiencia en Basilea. Por ejemplo, fue capaz de conjeturar la ley de Coulomb de la electrostática como resultado de la evidencia experimental de sus conferencias. Murió el 17 de marzo de 1782, habiendo recibido numerosos premios y honores en vida, por ejemplo ganando el Gran Premio de la Academia de París en 1734 y 1737. De hecho, Bernoulli ganó 10 premios por ensayos inscritos en las competiciones de la Academia de París, que generalmente se daban sobre temas de interés público, como la mejor forma de anclaje y la relación entre las mareas y la atracción lunar. Ganó dos premios sobre el tema del magnetismo y mejoró la construcción de la brújula.

Bernoulli fue un destacado científico y matemático. Sus principales contribuciones matemáticas fueron en las ecuaciones diferenciales, la mecánica y la probabilidad. Los esfuerzos de Bernoulli, junto con la obra de Euler, influirían en los matemáticos posteriores del siglo XIX.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

Isaac Barrow fue el primero en descubrir ciertos aspectos del cálculo diferencial. Hay una cierta controversia sobre esto, y también sobre la extensión de su influencia en Sir Isaac Newton, que fue su sucesor en Cambridge. Sin embargo, las conferencias de Barrow sobre geometría contienen algunos de los primeros teoremas del cálculo, y por esto es recordado.

Barrow nació en octubre de 1630 (la fecha exacta es desconocida), hijo de Thomas Barrow, un próspero drapeador de lino y fiel realista. Su madre, Anne, murió en el parto. Un rebelde en su juventud, Barrow más tarde se disciplinó y aprendió griego, latín, lógica y retórica. En 1643 ingresó en el Trinity College, donde permanecería durante 12 años. Barrow, como su padre, era un partidario del rey, pero en Trinity la atmósfera se hizo cada vez más anti-realista. Se ganó su grado B.A. en 1648, fue elegido fellow de la universidad en 1649, y recibió su grado M.A. en matemática en 1652. Con estas credenciales, ingresó a su posición final como conferenciante y examinador en la universidad.

Es probable que su próximo puesto hubiera sido una cátedra de griego, pero Barrow fue expulsado de su posición por el gobierno de Cromwell en 1655. Barrow vendió sus libros y emprendió una gira por Europa que duró cuatro años. Cuando regresó de sus viajes, Carlos II acababa de volver al poder; Barrow tomó órdenes sagradas y obtuvo así la cátedra Regius. En 1662 él también aceptó la cátedra Gresham de geometría en Londres, y el año siguiente fue designado como primer profesor Lucasiano de matemática en Cambridge. Durante los seis años siguientes, Barrow concentró sus esfuerzos en escribir las tres series de Lectiones, una colección de conferencias.

La educación de Barrow había sido bastante tradicional, centrada en Aristóteles y los pensadores del Renacimiento, y en algunos temas seguía siendo muy conservador. Pero estaba muy intrigado por el renacimiento del atomismo y la filosofía natural de René Descartes: en la tesis de su maestría estudió a Descartes en particular. Hacia 1652 había leído muchos comentarios de Euclides de Alejandría, así como autores griegos más avanzados como Arquímedes de Siracusa. Su Euclidis elementorum libri XV (los primeros principios de Euclides en 15 libros), escrito en 1654, fue diseñado como un texto de pregrado, haciendo hincapié en la estructura deductiva sobre el contenido. Más tarde produjo comentarios sobre Euclides, Arquímedes y Apolonio de Perga. 

Clic sobre la imagen para acceder al recurso

Aparentemente, la fama científica de Barrow se debió a sus Lectiones, aunque no han sobrevivido. La primera serie Lucasiana, Lectiones mathematicae -dada de 1664 a 1666- se ocupa de los fundamentos de la matemática desde un punto de vista griego. Barrow considera el estado ontológico de los objetos matemáticos, la naturaleza de la deducción, la magnitud espacial y la cantidad numérica, el infinito y el infinitesimal, la proporcionalidad y la inconmensurabilidad, así como las entidades continuas y discretas. Sus Lectiones geometricae fueron un estudio técnico de geometría superior.

En 1664 encontró un método para determinar la línea tangente a una curva, problema que debía ser resuelto completamente por el cálculo diferencial; su técnica implica la rotación y la traslación de líneas. Las conferencias posteriores de Barrow son una generalización de procedimientos de tangencia, cuadratura y rectificación compilados a partir de su lectura de Evangelista Torricelli, Descartes, Frans van Schooten, Johann Hudde, John Wallis, Christopher Wren, Pierre de Fermat, Christiaan Huygens, Blaise Pascal y James Gregory. El material de estas conferencias no fue totalmente original, basándose fuertemente en los autores anteriores, especialmente en Gregory, y las Lectiones geometricae de Barrow no fueron ampliamente leídas.

Barrow también contribuyó al campo de la óptica, aunque sus Lectiones opticae pronto fue eclipsado por la obra de Newton. La introducción describe un cuerpo lúcido, que consiste en “colecciones de partículas diminutas casi imposibles de concebir”, como la fuente de los rayos de luz; el color es una dilución de grosor. El trabajo se desarrolla a partir de seis axiomas, incluyendo la ley euclidiana de la reflexión y la ley seno de la refracción. Gran parte del material se toma de Abū ‘Alī al-Ḥasan ibn al-Ḥasan ibn al-Hayṯam, Johannes Kepler y Descartes, pero el método de Barrow para encontrar el punto de refracción en una interfaz plana es original.

Mucho se ha planteado la hipótesis de la relación entre Barrow y Newton; algunos dicen que Newton derivó muchas de sus ideas sobre el cálculo de Barrow, pero hay poca evidencia de esto. A finales de 1669 los dos colaboraron brevemente, pero no está claro si tuvieron alguna interacción antes de ese tiempo. En ese año Barrow había renunciado a su silla, siendo reemplazado por Newton, con el fin de convertirse en el Real Capellán de Londres, y en 1675 se convirtió en vicerrector de la universidad.

Barrow nunca se casó, contentándose con la vida de soltero. Su personalidad era contundente y sus sermones teológicos eran extremadamente lúcidos y perspicaces, aunque no fue un predicador popular. Barrow era también uno de los primeros miembros de la sociedad real, incorporada en 1662. Era pequeño pero fuerte, y gozó de buena salud; su muerte temprana el 4 de mayo de 1677 se debió a una sobredosis de drogas.

La contribución matemática de Barrow parece algo marginal comparada con la producción prodigiosa de su contemporáneo Newton. Sin embargo, él fue un matemático importante en su tiempo, ganando fama a través de su popular  Lectiones, y fue el primero en derivar ciertas proposiciones del cálculo diferencial.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Poco se sabe de la vida de Aryabhata, que se llama Aryabhata I para distinguirlo de otro matemático del mismo nombre que vivió cuatro siglos más tarde. Aryabhata desempeñó un papel en el desarrollo del actual sistema de números y contribuyó a la teoría de números en un momento en que gran parte de Europa estaba envuelta en la ignorancia.

Nació en la India y tuvo una conexión con la ciudad Kusumapura, la capital de los Guptas durante los siglos IV y V; este lugar se cree que es la ciudad de su nacimiento. Ciertamente, su Aryabhatiya fue escrito en Kusumapura, que más tarde se convirtió en un centro de aprendizaje matemático.

Aryabhata escribió dos obras: Aryabhatiya en 499, cuando tenía 23 años, y otro tratado que se ha perdido. El primer trabajo es un breve resumen de la matemática hindú, que consta de tres secciones sobre matemática, el tiempo y los modelos planetarios, y la esfera. Las secciones sobre matemática contienen 66 reglas matemáticas sin demostración, que tratan sobre aritmética, álgebra, trigonometría plana y trigonometría esférica. Sin embargo, también contiene conocimientos más avanzados, tales como fracciones continuas, ecuaciones cuadráticas, series infinitas y una tabla de senos. En el año 800 este trabajo fue traducido al árabe, y tenía muchos comentaristas indios.

El sistema numérico de Aryabhata, el que usó en su libro, asigna un número a cada una de las 33 letras del alfabeto indio, representando los primeros 25 números así como 30, 40, 50, 60, 70, 80, 90 y 100. Es de notar que estaba familiarizado con un sistema posicional, de modo que números muy grandes podran ser fácilmente descritos y manipulados usando esta notación alfabética. De hecho, parece probable que Aryabhata estuviera familiarizado con el cero como marcador de posición. El sistema de números indios posicional, que más tarde influiría grandemente en la construcción del sistema moderno, facilitó cálculos que serían imposibles bajo modelos más primitivos, como los números romanos. Aryabhata parece ser el creador de este sistema posicional.

En su examen del álgebra, Aryabhata investiga primeramente ecuaciones lineales con coeficientes enteros -aparentemente, el Aryabhatiya es el primer trabajo escrito en hacerlo. La cuestión surgió de ciertos problemas de astronomía, como el cálculo del período de los planetas. La técnica se llama kuttaka, que significa “pulverizar”, y consiste en partir la ecuación en problemas relacionados con coeficientes más pequeños; el método es similar al algoritmo euclidiano para encontrar el máximo divisor común, pero también está relacionado con la teoría de las fracciones continuas. 

Además, Aryabhata dio un valor para el número pi que era preciso a ocho decimales, mejorando las aproximaciones dadas por Arquímedes de Siracusa y Apolonio de Perga. Los eruditos han sostenido que él obtuvo esto independientemente de los griegos, teniendo un cierto método particular para aproximar a pi, pero no se sabe exactamente cómo lo hizo; Aryabhata también se dio cuenta de que pi era un número irracional. Su tabla de senos da valores aproximados a intervalos de menos de cuatro grados, y utiliza una fórmula trigonométrica para lograrlo.

Aryabhata también discute reglas para sumar los primeros n enteros, los primeros n cuadrados, y los primeros n cubos; da fórmulas para el área de triángulos y de círculos. Sus resultados para los volúmenes de una esfera y de una pirámide son incorrectos, pero esto puede haber sido debido a un error de traducción. Por supuesto, estos últimos resultados eran bien conocidos por los griegos y podrían haber llegado a Aryabhata a través de los árabes.

En cuanto a la astronomía presente en el texto, la matemática está diseñada para dilucidarla y hay varios resultados interesantes. Aryabhata da una excelente aproximación a la circunferencia de la Tierra (62.832 millas), y explica la rotación de los cielos a través de una teoría de la rotación axial de la Tierra. Irónicamente, esta teoría (correcta) fue considerada absurda por comentaristas posteriores, que alteraron el texto para remediar los errores de Aryabhata. Igualmente notable es su descripción de las órbitas planetarias como elipses; cabe notar que sólo datos astronómicos altamente precisos proporcionados por telescopios superiores permitieron a los astrónomos europeos diferenciar entre órbitas circulares y elípticas. Aryahbhata da una explicación correcta de los eclipses solares y lunares, y atribuye la luz de la Luna a la luz solar reflejada.

Aryabhata fue de gran influencia para los matemáticos y astrónomos indios posteriores. Tal vez lo más relevante para el desarrollo posterior de la matemática fue su sistema posicional. Sus teorías fueron extremadamente avanzadas considerando el tiempo en que él vivió, y los cálculos exactos de las medidas astronómicas ilustraron el poder de su sistema numérico.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Older Posts »