Feeds:
Entradas
Comentarios

Posts Tagged ‘Arquímedes’

Leonardo da Vinci es una de las personas más famosas de la época medieval. Artista, ingeniero y científico, era diverso y profético. Hizo importantes contribuciones al arte, la anatomía, la tecnología, la mecánica, la geología y la matemática. 

Resultado de imagen para da vinci

Leonardo da Vinci nació el 15 de abril de 1452 en Empolia, Italia. Era el hijo ilegítimo de Piero da Vinci, un ciudadano florentino. Su madre era una niña campesina llamada Caterina. El padre de Leonardo pronto se casó con una respetable mujer italiana, Albiera di Giovanni Amadori. Leonardo recibió una educación rudimentaria, y mostró su talento para la música y el arte a una edad temprana. En 1467 fue aprendiz de Andrea del Verrocchio, con quien estudió pintura, escultura y mecánica. 

Leonardo completó algunas de sus primeras pinturas durante este tiempo, incluido el Bautismo de Cristo.

En 1482 partió para trabajar para el duque de Milán; en ese momento él ya era un experto en arquitectura, pintura y escultura, así como en ingeniería militar. Permaneció en Milán hasta 1499, tiempo durante el cual se interesó más en la física y la mecánica y en las propiedades de la luz. También aumentó su escasa educación matemática, estudiando latín y geometría al mismo tiempo. 

Leonardo formuló su teoría de la supremacía de la pintura sobre los principios matemáticos de la proporción y la perspectiva. Su interés en la proporción lo llevó a realizar más investigaciones en física y matemática. Algunos de sus primeros trabajos en matemática fueron bastante erróneos, ya que no tenía una comprensión adecuada del cálculo aritmético; un ejemplo es su afirmación de que la fracción 2/2 es la raíz cuadrada de 2, ya que afirma falsamente que 2/2 por 2/2 es 4/2. 

Sus otros proyectos durante el tiempo en Milán incluyen la física de la luz, la física de la visión y el problema del vuelo mecánico. Colaboró con el matemático Pacioli en la Divina proporción. Es probable que Leonardo haya leído los Elementos de Euclides de Alejandría antes de hacer los dibujos de este libro. Los cuadernos de Leonardo contienen pruebas de varias proposiciones en los Elementos, y es probable que su amigo Pacioli lo haya alentado y lo haya ayudado en su estudio de Euclides. 

Leonardo partió para Venecia después de que los franceses capturaron al duque de Milán, y más tarde regresó a Florencia. Sirvió brevemente con Cesare Borgia como ingeniero militar, y más tarde completó su famosa Mona Lisa.

De 1500 a 1506 realizó una investigación sobre anatomía humana y dedicó una mayor parte de su tiempo a la matemática y la mecánica. Después de completar su estudio de Euclides (Leonardo estaba especialmente interesado en el tratamiento de la proporción en el Libro X de los Elementos), comenzó su propia investigación sobre la equiparación. Estaba interesado principalmente en la cuadratura de las superficies curvilíneas (transformando estas regiones curvas en cuadrados con la misma área), aunque su método de prueba era a menudo mecánico más que estrictamente geométrico. Leonardo propuso varios métodos para cuadrar el círculo; estaba familiarizado con el método de Arquímedes  de Siracusa, pero rechazó la aproximación del número pi de este último por 22/7. Intentó mejorar la aproximación al inscribir un polígono de 96 lados en el círculo. 

Animado por su supuesto descubrimiento de la cuadratura del círculo el 30 de noviembre de 1504, realizó una investigación similar sobre duplicar cuadrados y cuadruplicar círculos. También se interesó en la duplicación del cubo (problema que ya había sido resuelto por Eratóstenes de Cirene hace siglos), insatisfecho por una solución reciente dada por Valla. Eventualmente, Leonardo concibió una solución que eliminó la necesidad de un aparato mecánico, y de ese modo pudo obtener aproximaciones extremadamente precisas para la raíz cúbica de dos. Sin embargo, no pudo proporcionar una prueba rigurosa de su método. 

Muchos de sus escritos matemáticos están incluidos en el Codex Atlanticus. Leonardo continuó investigando las propiedades de las superficies curvilíneas, como las porciones que quedan entre un círculo y un cuadrado o hexágono inscrito. También exploró la posibilidad del vuelo humano mediante el estudio de la anatomía de las aves, así como el movimiento del agua.

En 1506 regresó a Milán, donde sirvió bajo el mando del gobernador francés. En este último período de su vida, produjo algunos de sus mejores dibujos anatómicos, y sus esfuerzos científicos se extendieron a la hidrología, la geología, la meteorología, la biología y la fisiología humana. En todas estas áreas, sintió que la matemática tenía las claves del conocimiento y trató de formular leyes geométricas para estas disciplinas. Los franceses fueron expulsados ​​en 1513, y Leonardo se fue a Roma, esperando encontrar trabajo con el Papa León X; esto no se materializó, y volvió al servicio de Francia en 1516, trabajando con Francisco I. Sufrió un derrame cerebral en Amboise y murió el 2 de mayo de 1519.  

El enfoque de Leonardo para el estudio de la naturaleza no puede considerarse científico en el sentido moderno. Creía en la importancia de la investigación empírica, pero muchas de sus ideas eran puramente especulativas, sin un razonamiento sólido detrás de ellas. Por supuesto, muchos de sus conceptos fueron contribuciones brillantes también. En matemática, parece haber sido un aficionado. Ciertamente hizo algunos descubrimientos valiosos, y respetó profundamente el papel de la matemática en la investigación de la naturaleza. Pero muchas de sus obras tenían fallas profundas, y su enfoque de las pruebas era más típico de su identidad como artista. Además, sus trabajos matemáticos no han influido en el progreso posterior del pensamiento matemático. Su investigación geométrica sobre áreas curvilíneas desarrolló un aspecto del trabajo de Euclides, pero sus escritos no eran muy conocidos en su época y, por lo tanto, no ejercieron influencia sobre otros pensadores matemáticos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Anuncios

Read Full Post »

Los árabes heredaron las obras de famosos matemáticos griegos, como Euclides de Alejandría, Apolonio de Perga y Arquímedes de Siracusa. Una vez que dominaron las ideas que contenían, varios de ellos pudieron ampliar los métodos. Ibrahim ibn Sinan fue un árabe que empleó gran originalidad en su estudio de la matemática, y representa un punto culminante en el conocimiento científico árabe.  

Ibrahim ibn Sinan nació en el año 908, probablemente en Bagdad, en una familia de eruditos famosos. Su padre, Sinan ibn Thabit, era médico, astrónomo y matemático. Ibrahim llevó una vida breve, muriendo a los 38 años en Bagdad, pero logró una cantidad significativa de actividad científica. Además de su trabajo en matemática, Ibrahim examinó los movimientos aparentes del Sol, estudió la óptica de las sombras e investigó instrumentos astronómicos como el astrolabio. 

En matemática propiamente dicha, las obras escritas de Ibrahim cubren tangentes de círculos y geometría en general. Su cuadratura de la parábola (determinación del área encerrada por una parábola dada) implica una expansión del método de Arquímedes. El abuelo de Ibrahim, Thabit ibn Qurra, ya había generalizado la técnica de Arquímedes, que era equivalente a sumar integrales definidas, pero su exposición fue bastante larga. Por el contrario, el análisis de Ibrahim es simple y elegante. Él descompone el área de la parábola en una colección aproximada de triángulos inscritos, y demuestra una relación elemental entre las áreas de los polígonos inscritos. Como resultado, el área deseada es cuatro tercios del primer triángulo inscrito. El genio de Ibrahim es evidente en su elegante solución a este problema.  

También buscó revivir la geometría clásica, que había sido descuidada por sus contemporáneos. Ibrahim deseaba proporcionar un método práctico para resolver problemas geométricos y categorizar los problemas de acuerdo con su dificultad y método. Siguiendo la epistemología de los antiguos griegos, Ibrahim abogó por la doble importancia de la síntesis y el análisis. El trabajo de Ibrahim ibn Sinan ejerció una profunda influencia en la filosofía matemática de los posteriores matemáticos árabes.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Entre el momento de René Descartes y Sir Isaac Newton, se dice que Christiaan Huygens fue el matemático más grande de Europa. Hizo contribuciones sustanciales a la mecánica, la astronomía, la medición del tiempo, la teoría de la luz y la geometría. Su trabajo demostró la eficacia de un enfoque matemático para el estudio de la naturaleza, y Huygens desarrolló muchas herramientas matemáticas sofisticadas. 

Christiaan Huygens nació en La Haya, Países Bajos, el 14 de abril de 1629. Su familia era prominente y tenía una larga historia de servicio diplomático a la casa real. El padre de Christiaan, Constantijn Huygens, educó a sus dos hijos personalmente, cubriendo temas como música, idiomas antiguos, matemática y mecánica. Christiaan Huygens mostró sus considerables talentos intelectuales a una edad temprana, y tenía un don para aplicar la teoría a las construcciones reales: a los 13 años construyó un torno. 

En 1645 Huygens asistió a la Universidad de Leiden, donde estudió Derecho y Matemática. Durante sus dos años allí, se familiarizó con las obras recientes de Francois Viète, Pierre de Fermat y Descartes. Huygens comenzó a investigar la mecánica de la caída de los cuerpos y comenzó una correspondencia con Marin Mersenne. Después de completar sus estudios universitarios, se matriculó en el Colegio de Orange de 1647 a 1649, donde ejerció la abogacía. Sin embargo, Huygens no siguió una carrera en la diplomacia, sino que eligió ser un científico. 

Huygens vivió en su casa hasta 1666, recibiendo el apoyo financiero de su padre que le permitió centrarse en su investigación científica. Primero investigó sobre matemática, considerando cuadraturas de curvas y problemas algebraicos. Las contribuciones matemáticas de Huygens son importantes, ya que mejoró los métodos existentes y tuvo éxito en la aplicación de estos a fenómenos naturales. También desarrolló la nueva teoría de las evolutas y fue uno de los fundadores de la teoría de la probabilidad. 

En 1651, Huygens produjo un manuscrito que refutaba la cuadratura del círculo de Gregory de St. Vincent. En el mismo trabajo, derivó una conexión entre la cuadratura y el centro de gravedad para círculos, elipses e hipérbolas. Su próxima publicación, en 1654, aproxima el centro de gravedad de cualquier arco de un círculo y así obtiene una cuadratura aproximada. Una técnica similar, desarrollada más de una década después, produjo un método rápido para calcular logaritmos.  

Al enterarse del trabajo de probabilidad de Blaise Pascal, Huygens comenzó a estudiar problemas de juego en 1656, como la división justa de apuestas en un juego interrumpido. Inventó el concepto de expectativa matemática, que representa las ganancias a largo plazo en un juego de azar. Esta idea, expresada por Huygens en una forma primitiva, ahora es de importancia central para la teoría moderna de la probabilidad. 

En 1657 Huygens relacionó la longitud del arco de la parábola con la cuadratura de la hipérbola, y utilizó esta propiedad para encontrar el área de la superficie de un paraboloide de revolución. Un año después, descubrió un teorema vital del cálculo moderno: que el cálculo del área superficial de una superficie de revolución podía reducirse a encontrar la cuadratura de la curva normal. 

Su teoría de las evolutas, que se refiere a la geometría de las cuerdas que cuelgan de una superficie convexa, se desarrolló en 1659 como un componente de su investigación sobre los relojes de péndulo. Su método de evolutas determina esencialmente el radio de curvatura de una curva algebraica dada. Huygens también estudió logaritmos, comenzando en 1661, y en este sentido introdujo la función exponencial natural.  

Huygens también contribuyó a otras áreas de la ciencia. Completó un manuscrito sobre hidrostática en 1650, en el cual derivó la ley de Arquímedes de Siracusa a partir de un axioma básico. En 1652 formuló las reglas de la colisión elástica y comenzó su estudio sobre óptica. Más tarde, en 1655, junto con su hermano, recurrió al pulido de lentes y la construcción de telescopios y microscopios. Construyó algunos de los mejores telescopios de su época y pudo detectar los anillos de Saturno. Huygens también observó bacterias y otros objetos microscópicos. 

En 1656 Huygens inventó el reloj de péndulo como una herramienta para medir el tiempo. Se había vuelto cada vez más importante medir con precisión el tiempo, ya que esta tecnología era necesaria para la astronomía y la navegación. La invención de Huygens tuvo mucho éxito. En su investigación teórica de la oscilación del péndulo, Huygens descubrió que el período podía hacerse independiente de la amplitud si la trayectoria del péndulo fuera cicloide. Luego construyó el reloj de péndulo de forma tal que se induciría que el balanceo del péndulo tuviera una trayectoria cicloidal. Este llamado tautocronismo de la cicloide es uno de los descubrimientos más famosos de Huygens.  

A continuación, Huygens comenzó a estudiar la fuerza centrífuga y el centro de oscilación en 1659, obteniendo varios resultados fundamentales. Derivó rigurosamente las leyes de descenso a lo largo de planos y curvas inclinadas y obtuvo el valor de la aceleración debida a la gravedad en la Tierra, que es de aproximadamente 9,8 metros por segundo al cuadrado. Huygens volvió a considerar caídas resistiendo distintos medios (como el aire) en 1668, y concibió la resistencia (o fricción) como proporcional a la velocidad del objeto. Huygens también investigó la teoría ondulatoria de la luz; explicó la reflexión y la refracción en 1676 mediante su concepción de la luz como una serie de ondas de choque de movimiento rápido.  

Es interesante que Huygens no aceptara el concepto newtoniano de fuerza, y fue capaz de eludirlo por completo. También criticó el concepto de fuerza de Gottfried Leibniz, aunque estaba de acuerdo con el principio de la conservación en los sistemas mecánicos. En su filosofía natural, estuvo de acuerdo con Descartes, tratando de llegar a una explicación mecanicista del mundo. Una de sus obras más populares especuló sobre la existencia de vida inteligente en otros planetas, lo que Huygens pensó que era altamente probable. 

Durante el período 1650-1666, Huygens conoció a muchos científicos y matemáticos franceses, y visitó París varias veces. En 1666 Huygens aceptó la membresía en la recién fundada Académie Royale des Sciences y se mudó a París, donde permaneció hasta 1681. Fue el miembro más destacado de la academia y recibió un estipendio generoso. Pasó este tiempo desarrollando un programa científico para el estudio de la naturaleza, observando los cielos y exponiendo sus teorías de la gravedad y la luz.  

Huygens sufría de mala salud y varias veces se vio obligado a regresar a La Haya. En 1681 se fue de nuevo debido a una enfermedad y, debido a tensiones políticas y religiosas, no fue invitado a regresar a Francia. Huygens nunca se casó, pero pudo vivir en la propiedad familiar. En la última década de su vida, regresó a la matemática, habiéndose convencido de la fecundidad del cálculo diferencial de Leibniz. Sin embargo, el conservadurismo matemático de Huygens lo llevó a emplear sus viejos métodos geométricos, y esto de alguna manera inhibió su progreso y comprensión del cálculo. Sin embargo, Huygens pudo resolver varios problemas matemáticos planteados públicamente, como la isócrona de Leibniz, la tractriz y la catenaria. 

Huygens finalmente sucumbió a su constitución enferma, y murió el 8 de julio de 1695. Fue el científico y matemático más prominente de su tiempo (al menos antes que Newton y Leibniz se volvieran más productivos), e hizo contribuciones brillantes a diversas áreas de la ciencia. Sin embargo, la renuencia de Huygens a publicar teorías insuficientemente desarrolladas limitó su influencia en el siglo XVIII; tampoco tuvo ningún alumno para que llevara a cabo su pensamiento. Su trabajo en mecánica abrió nuevas fronteras de investigación, pero su trabajo matemático extendió principalmente técnicas más antiguas en lugar de abrir nuevas perspectivas para la exploración. Sin embargo, Huygens fue un maestro en la aplicación de métodos matemáticos a problemas científicos, como lo demuestra su trabajo sobre la medición del tiempo.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »