Feeds:
Entradas
Comentarios

Posts Tagged ‘Arquímedes’

Sophie Germain es conocida como una de las mejores matemáticas de Francia. Hizo contribuciones importantes a la teoría de números, a las ecuaciones diferenciales parciales y a la geometría diferencial. Germain pudo lograr mucho a pesar de la falta de educación formal y la oposición de sus padres. 

Nacida como hija de Ambroise-François Germain y Marie-Madeleine Gruguelu el 1 de abril de 1776, en París, Sophie Germain vivió en una casa acomodada durante tiempos turbulentos. Su padre era diputado por los Estados Generales, y era de profesión comerciante; más tarde se convirtió en director del Banco de Francia. Bajo esta cómoda situación, Germain creció con la extensa biblioteca de su padre a su disposición. En un momento en que las mujeres no recibían regularmente educación, Germain se las arreglaba leyendo en casa. A los 13 años leyó un relato de la muerte de Arquímedes de Siracusa en manos de un descuidado soldado, y el matemático siciliano se convirtió en un símbolo heroico para ella. A esta edad tan joven, decidió ser matemática. Aunque sus padres se opusieron a esta dirección de sus energías, primero dominó el latín y el griego, y luego comenzó a leer a Sir Isaac Newton y a Euclides de Alejandría. 

Eventualmente, la biblioteca en el hogar se volvió insuficiente para las necesidades intelectuales de Germain, y a los 18 años buscó una mejor situación. Pudo obtener notas de conferencias de los cursos impartidos en la École Polytechnique, y estaba particularmente interesada en las conferencias de análisis de Joseph-Louis Lagrange. Aunque no está registrado, Germain fingió ser un estudiante, tomando el seudónimo de Le Blanc, y presentó un trabajo a largo plazo sobre análisis a Lagrange. Éste quedó debidamente impresionado por su originalidad, y buscó a su autor. Al descubrir que el escritor era en realidad Germain, Lagrange se convirtió en su patrocinador y consejero matemático. 

Germain obtuvo educación superior puramente por correspondencia con los grandes eruditos de Europa; por este medio ella se hizo muy versada en matemática, literatura, biología y filosofía. Se interesó en ciertos problemas de la teoría de números después de leer la Théorie des nombres (1798) de Adrien-Marie Legendre, y pronto surgió una correspondencia voluminosa entre los dos. En el curso de estas comunicaciones, colaboraron en resultados matemáticos, y algunos de los descubrimientos de Sophie se incluyeron en la segunda edición de la Théorie

También en este momento ella leyó Disquisitiones arithmeticae (Investigaciones aritméticas) de Carl Friedrich Gauss, , y entró en una correspondencia con él bajo el seudónimo de Le Blanc. En 1807, cuando las tropas francesas ocuparon Hannover, temió por la seguridad de Gauss en Göttingen. Esperando que no se repitiera la muerte de Arquímedes en la persona de Gauss, se comunicó con un comandante francés que era amigo de su familia. De esta manera, Gauss llegó a conocer su verdadera identidad. 

Entre su trabajo en teoría de números, Germain trabajó en el famoso problema llamado último teorema de Fermat, que fue resuelto por Andrew Wiles en 1994. El teorema es una conjetura de Pierre de Fermat, que establece que no hay soluciones enteras x, y, z a la ecuación x^{n}+y^{n}=z^{n} si n es un número entero mayor que dos. Germain pudo demostrar que no existen soluciones enteras positivas si x, y, z son relativamente primos (no tienen divisores comunes) entre sí y n, donde n es cualquier primo menor que 100. 

Germain estaba interesada en matemática más allá de la teoría de números; de hecho, hizo contribuciones a la matemática aplicada y la filosofía. En 1808, el físico alemán Ernst Chladni visitó París y realizó experimentos de acústica y elasticidad. Tomaría una placa horizontal de metal o vidrio, rociaría arena uniformemente sobre ella y luego causaría vibraciones en la placa frotando el borde con un arco de violín. Las oscilaciones resultantes moverían las partículas de arena a ciertos grupos estables, llamados figuras de Chladni. En 1811, la Académie des Sciences ofreció un premio por la mejor explicación del fenómeno; el desafío era formular una teoría matemática de las superficies elásticas que estuviera de acuerdo con las figuras de Chladni. 

Germain intentó resolver el problema, y después de una serie de revisiones y concursos subsecuentes, ganó el premio en 1816 con un artículo que llevaba su propio nombre. Su trabajo trataba las vibraciones de las superficies elásticas curvas y planas en general. En 1821, ella produjo una versión mejorada de su trabajo premiado, en la que afirmó que la ley para la superficie elástica vibratoria general está dada por una ecuación diferencial parcial de cuarto orden. Uno de los conceptos que desempeña un papel en este trabajo fue la noción de curvatura media, que era un promedio de las curvaturas principales, es decir, las curvaturas de una superficie en dos direcciones perpendiculares. 

En trabajos posteriores, Germain amplió la física de las superficies elásticas curvadas vibrantes, teniendo en cuenta el efecto de grosor variable. También contribuyó a la filosofía, desarrollando el concepto de unidad de pensamiento: que la ciencia y las humanidades siempre estarían unificadas con respecto a su motivación, metodología e importancia cultural. Ella murió el 27 de junio de 1831 en París.   

El trabajo de Germain no ha recibido muchos seguidores, y esto puede deberse en parte a su género. Su trabajo sobre teoría de números y ecuaciones diferenciales fue de la más alta calidad, y ella contribuyó al desarrollo de la geometría diferencial a través de su noción de curvatura media.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

Conocido como el “príncipe de las matemáticas”, Carl Gauss a menudo se clasifica con Sir Isaac Newton y Arquímedes de Siracusa como el principal pensador; ciertamente, entre sus contemporáneos no tenía rivales, como incluso ellos reconocieron. Conservador, frío, introspectivo, brillante, prolífico, trágico y ambicioso: la vida de Gauss representa la del matemático ideal o arquetípico en muchos aspectos. Su trabajo se extendió a través de las matemáticas puras, incluidas la aritmética y la teoría de números, la geometría, el álgebra y el análisis; a las matemáticas aplicadas, probabilidad y estadística, mecánica y física; a las ciencias de la astronomía, geodesia, magnetismo y dioptras, a labores industriales en ciencia actuarial y valores financieros. Gauss fue un investigador de campo activo, empirista, analista de datos y estadístico, teórico e inventor, con más de 300 publicaciones y más de 400 ideas originales a lo largo de una larga vida de esfuerzo intenso y sostenido. Su genio floreció en una época de poca actividad matemática en Alemania, y es más notable por su estilo solitario. 

Carl Friedrich Gauss nació el 30 de abril de 1777, en Brunswick, Alemania, de padres de clase baja. La madre de Gauss era muy inteligente pero semi-analfabeta, y fue una ferviente defensora de su hijo a lo largo de su larga vida. Su padre trabajó en varias profesiones en un intento de sacar a su familia de la pobreza; de una inclinación práctica, nunca apreció los dones extraordinarios de su hijo, que se manifestaron a una edad temprana. Antes de poder hablar, Carl había aprendido a calcular y, a los tres años, ¡había corregido los errores en los cálculos salariales de su padre! En su octavo año, mientras estaba en su primera clase de aritmética, Gauss encontró una fórmula para la suma de los primeros n números consecutivos. Su maestro, adecuadamente impresionado, le proporcionó al niño literatura para alentar su desarrollo intelectual.  

En 1788, a la edad de 11 años, el niño prodigio ingresó al Gymnasium, donde progresó rápidamente en todos sus estudios, especialmente los clásicos y matemática. Gracias a la benevolencia de sus maestros, el duque de Brunswick le asignó un estipendio, lo que lo hizo independiente; Gauss tenía 16 años en ese momento. En 1792 ingresó en el Collegium Carolinum, que ya poseía una educación científica completa. Sus extensos cálculos e investigaciones empíricas lo habían llevado a una profunda familiaridad con los números y sus propiedades; él ya había descubierto independientemente la ley del movimiento planetario de Bode y el teorema binomial para exponentes racionales. 

Mientras estaba en el Collegium, Gauss continuó sus investigaciones en aritmética empírica y formuló el principio de mínimos cuadrados utilizado en estadística. En 1795 ingresó en la Universidad de Göttingen, y para entonces había redescubierto la ley de la reciprocidad cuadrática, relacionado la media aritmético-geométrica con los desarrollos de series infinitas, conjeturado el teorema del número primo y encontrado algunos resultados tempranos en la geometría no euclidiana. Gauss leyó a Newton, pero la mayoría de los clásicos matemáticos no estaban disponibles; como resultado, casi se convirtió en filólogo. Sin embargo, en 1796 hizo el importante descubrimiento de que el 17-ágono regular podía construirse con regla y compás, un problema pendiente que no se había resuelto durante 2.000 años. Este éxito lo motivó a seguir el camino de la matemática. 

Su destino como matemático quedó establecido, y los años hasta 1800 estuvieron marcados por una notable profusión de ideas. En estilo, Gauss adoptó el rigor de la geometría griega, aunque pensó algebraicamente y numéricamente. Persiguió intensas investigaciones empíricas, seguidas por la construcción de teorías rigurosamente establecidas. Este enfoque de la ciencia aseguraba que había una estrecha conexión entre la teoría y la práctica. 

En 1798, terminada la universidad, Gauss regresó a Brunswick, donde vivió solo y trabajó asiduamente. El año siguiente presentó la prueba del teorema fundamental del álgebra, que establece que cualquier polinomio de grado n tiene exactamente n raíces en los números complejos; con este resultado, la primera de las cuatro pruebas que escribiría para este teorema, obtuvo su doctorado en la Universidad de Helmstedt. El año 1801 marcó dos grandes logros para Gauss: las Disquisitiones arithmeticae (Investigaciones aritméticas) y el cálculo de la órbita del recién descubierto planeta Ceres. El primero fue un resumen sistemático del trabajo previo en teoría de números, en el que resolvió la mayoría de las preguntas pendientes difíciles y formuló conceptos que influirían en la investigación futura durante dos siglos. Introdujo el concepto de congruencia modular, probó la ley de la reciprocidad cuadrática, desarrolló la teoría de las formas cuadráticas y analizó la ecuación ciclotómica. Este libro ganó la fama y el reconocimiento de Gauss entre los matemáticos como su “príncipe”, pero su estilo austero aseguró que sus lectores fueran pocos. En cuanto a Ceres, era un planeta nuevo que había sido observado por Giuseppe Piazzi y posteriormente se perdió de vista. Gauss, equipado con sus talentos computacionales, se encargó de ubicar el cuerpo celeste. Con una teoría de órbita más precisa, que utilizaba una órbita elíptica en lugar de circular, y sus métodos numéricos de mínimos cuadrados, pudo predecir la ubicación de Ceres. Debido a que no reveló sus métodos, la hazaña parecía sobrehumana y estableció a Gauss como un genio científico de primera clase. 

Durante la próxima década, Gauss explotó las ideas científicas de los 10 años anteriores. Pasó de matemático puro a astrónomo y científico físico. Aunque fue tratado bien por el duque de Brunswick, que todavía lo apoyaba con un estipendio, Gauss decidió tomar la astronomía como carrera estable en la que podría seguir investigando sin la carga de la enseñanza; en 1807 aceptó la dirección del observatorio de Göttingen. Hizo algunos contactos entre otros científicos que brotaron en colaboraciones, pero tuvo poca interacción con otros matemáticos: intercambió algunas cartas con Sophie Germain y más tarde tuvo a Gustav Peter Lejeune Dirichlet y Bernhard Riemann como estudiantes, pero no trabajó de cerca con ninguna de estas personas. Esto parece deberse a su arraigada introspección, una consecuencia de sus poco apreciados talentos de la infancia, y una ambición de conducción que lo hizo no estar dispuesto a compartir el descubrimiento con los demás. Gran parte del trabajo de Gauss fue inédito, aparentemente porque creía que no era digno de difusión; la verdadera razón parece ser su secretismo posesivo que fomentó la renuencia a revelar sus métodos. 

En este período de tiempo, se fijaron las opiniones políticas de Gauss: un acérrimo conservador, estaba desconcertado por el caos de la revolución y era escéptico de la democracia. En filosofía fue un empirista, rechazando el idealismo de Immanuel Kant y Georg Hegel. También experimentó algo de felicidad personal en este momento; en 1805 se casó con Johanna Osthoff, con quien engendró una hija y un hijo. Pero en 1809 murió en el parto, y Gauss se sumió en la soledad. Aunque pronto se volvió a casar con Minna Waldeck, este matrimonio fue menos feliz, ya que a menudo estaba enferma. Gauss dominó a sus hijas y peleó con sus hijos, que dejaron Alemania para irse a Estados Unidos. 

En sus primeros años en Göttingen, Gauss tuvo otra oleada de ideas matemáticas sobre funciones hipergeométricas, la aproximación de la integración y el análisis de la eficacia de estimadores estadísticos. Sus deberes astronómicos devoraron gran parte de su tiempo, pero continuó con las investigaciones matemáticas en sus momentos libres. En este momento desarrolló muchas de las nociones de la geometría no euclidiana, elaborada desde sus primeros años en Göttingen como estudiante. Sin embargo, su conservadurismo lo hizo reacio a aceptar la verdad de sus descubrimientos, y no estaba dispuesto a enfrentar el ridículo público que acompañaba a tales matemáticas novedosas. Esto condujo a argumentos posteriores sobre la prioridad con János Bolyai, quien desarrolló independientemente la geometría no euclidiana a pesar de la influencia negativa de Gauss. 

Los esfuerzos de Gauss en ciencia también fueron considerables, pero los repasaremos brevemente y nos centraremos en sus aspectos matemáticos. En 1817 Gauss se interesó en la geodesia, la medida de la Tierra. Completó, después de muchos obstáculos administrativos, la triangulación de Hannover 30 años después. Como resultado de su arduo trabajo de campo, inventó el heliotropo, un dispositivo que podría actuar como un faro incluso durante el día al reflejar la luz solar. Su trabajo en geodesia inspiró las primeras matemáticas de la teoría potencial, y el mapeo de una superficie a otra, un concepto importante en la geometría diferencial. También se sintió estimulado a continuar su investigación en estadística matemática, y sus Disquisitiones generales circa superficies curves (Investigaciones generales de superficies curvas) de 1828 alimentarían más de un siglo de actividad en geometría diferencial. En 1825, Gauss obtuvo nuevos resultados sobre la reciprocidad bicuadrática y estaba trabajando en geometría no euclidiana y funciones elípticas. Disminuyendo la velocidad debido a la edad, Gauss recurrió a la física y el magnetismo para una nueva inspiración. En 1829 declaró la ley de menor restricción, y en 1830 contribuyó al tema de la capilaridad y el cálculo de variaciones. El año 1830-1831 fue bastante difícil, ya que Gauss estaba afligido por un problema cardíaco y su esposa murió de tuberculosis. En este momento, Gauss comenzó a colaborar con Wilhelm Weber en magnetismo e inventó el primer telégrafo en 1834. El trabajo de Gauss en 1839 basado en datos de observatorios magnéticos de todo el mundo expresó el potencial magnético en la superficie de la Tierra mediante una serie infinita de funciones esféricas. Su fructífera colaboración con Weber ya había terminado con el exilio de este último por razones políticas. En 1840 Gauss dio un tratamiento sistemático de la teoría potencial como un tema matemático, y en 1841 analizó el camino de la luz a través de un sistema de lentes. 

Desde principios de la década de 1840, la productividad de Gauss disminuyó gradualmente. Tenía más gusto por la enseñanza, y Dedekind y Riemann estaban entre sus alumnos más dotados. Trabajando en ciencia actuarial, recopiló muchas estadísticas de publicaciones periódicas; esta información lo ayudó en sus especulaciones financieras, que lo hicieron bastante rico. Su salud gradualmente falló, hasta que murió en su sueño el 23 de febrero de 1855, en Göttingen. 

Gauss fue uno de los matemáticos más grandes de todos los tiempos. Más tarde, los matemáticos, ignorantes de que Gauss ya se había ido antes que ellos, replicaron muchos de sus descubrimientos. Su nombre está asociado con muchas áreas diversas de la matemática, y su impacto no puede ser sobreestimado.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Galileo Galilei es uno de los nombres más conocidos en la historia de la ciencia. Este hombre vivió en una época en que la filosofía especulativa fue gradualmente suplantada por la matemática y la evidencia experimental, y de hecho contribuyó, tal vez más que cualquiera de sus contemporáneos, a este cambio de paradigma. La investigación de Galileo sobre matemática, mecánica, física y astronomía alteró por completo la forma en que las personas buscaban el conocimiento del mundo natural y comenzó una avalancha de investigaciones científicas en toda Europa. 

Galileo nació el 15 de febrero de 1564, en Pisa, Italia. Su padre, Vincenzio Galilei, era músico y miembro de una antigua familia patricia. Vincenzio se casó con Giulia Ammannati de Pescia en 1562, y Galileo nació dos años más tarde. Él sería uno de siete hijos. Primero fue tutelado en Pisa, pero la familia regresó a Florencia en 1575. Estudió en el monasterio de Santa María en Vallombrosa hasta 1581, cuando se matriculó en la Universidad de Pisa como estudiante de medicina. Galileo tenía poco interés en la medicina, pues prefería la matemática, en la que progresaba rápidamente a pesar de la desaprobación de su padre. En 1585 dejó la escuela sin un título y siguió el estudio de Euclides de Alejandría y Arquímedes de Siracusa en privado. 

Durante los próximos cuatro años, Galileo dio clases privadas de matemática en Florencia, mientras componía algunas obras menores sobre mecánica y geometría. Fue en este momento que el padre de Galileo se involucró en una controversia musical. Vincenzio Galilei resolvió la disputa a través de investigaciones experimentales, y este enfoque demostró tener una gran influencia en su hijo. Galileo maduraría y se convertiría en un gran experimentador que probaría las teorías matemáticas con evidencia física.

En 1589, Galileo obtuvo la cátedra de matemática en Pisa, donde realizó algunos de sus primeros experimentos sobre la caída de los cuerpos. Aproximadamente en este momento, Galileo se embarcó en una campaña de toda la vida para desacreditar la física aristotélica, la visión oficial del mundo defendido por la Iglesia Católica Romana, que, entre otras cosas, declaró que los objetos más densos caen más rápido. Galileo enfureció a muchos de sus colegas profesores al demostrar públicamente que cuerpos de diferentes pesos caían a la misma velocidad, arrojando esos objetos desde la Torre Inclinada de Pisa. Su tratado sobre estos temas fue De motu (Sobre el movimiento), y se basó en algunas ideas de Arquímedes.

Su padre murió en 1591, creando una situación financiera incierta para Galileo. Debido a la animosidad que había despertado, su puesto en Pisa no se renovó; sin embargo, sus amigos lo ayudaron a obtener un lugar en Padua, donde la comunidad era menos conservadora. Dio conferencias sobre Euclides, Claudio Ptolomeo y mecánica, pero no se interesó en la astronomía hasta mucho después. En 1597 Galileo expresó su simpatía por el sistema copernicano a Johannes Kepler, pero no promovió públicamente la astronomía anti-aristotélica en este momento.

Mientras estaba en Padua, Galileo tuvo una amante llamada Marina Gamba, que más tarde le dio dos hijas y un hijo. Su hija mayor, Virginia, sería un gran consuelo para él en años posteriores de lucha y conflicto. En 1602 se interesó en los movimientos de los péndulos y la aceleración de los cuerpos que caen, y derivó correctamente la ley de caída libre en 1604, aunque con una suposición incorrecta. En el mismo año, una supernova provocó una disputa sobre la noción aristotélica de la incorruptibilidad de los cielos, y Galileo pronunció varias conferencias públicas sobre este tema. Pronto se interesaría cada vez más en el estudio de los cielos.

En 1609 Galileo se enteró de la invención de un telescopio por Hans Lipperhey, un afilador de lentes holandés, y el profesor paduano se dispuso a construir su propia versión, que finalmente fue 30 veces más poderosa que la original. Este dispositivo, tan útil para la navegación, le valió un puesto de por vida en Padua, y comenzó a usarlo para ver el cielo. Pronto descubrió que la Luna tenía montañas y que la Vía Láctea consistía en muchas estrellas separadas. Galileo publicó muchos descubrimientos adicionales en Sidereus nuncios (1610). Su fama resultante le valió el puesto de matemático y filósofo para el gran duque de Toscana, donde podría centrarse en su investigación sin tener que enseñar.

El libro creó un furor en Europa, y muchos afirmaron que era un fraude, aunque Kepler lo aprobó. En los satélites de Júpiter, Galileo ahora vio evidencia decisiva contra la concepción aristotélica de que todos los cuerpos celestes giraban alrededor de la Tierra. En 1611 viajó a Roma, donde fue honrado por los jesuitas del Colegio Romano y admitido en la Academia Lincean.

Después de este tiempo, Galileo volvió a la física y se vio envuelto en más controversias en Florencia. La disputa se refería al comportamiento de los cuerpos flotando en el agua, y Galileo apoyó las teorías de Arquímedes contra las de Aristóteles; él pudo, usando los conceptos de momento y velocidad, extender las ideas de Arquímedes más allá de las situaciones hidrostáticas.

En 1613, Galileo publicó Letters on Sunspots, donde habló por primera vez en forma impresa sobre el sistema copernicano. Ciertos católicos no consideraron favorablemente este documento, y la oposición creció en los años siguientes. En opinión de Galileo, la teología no debía interferir con cuestiones puramente científicas, aquellas que podrían resolverse experimentalmente; y en 1615 Galileo fue a Roma para luchar contra la supresión del copernicanismo. El Papa Pablo V, molesto por los cuestionamientos de la autoridad teológica, nombró una comisión para determinar el movimiento de la Tierra: en 1616 la comisión falló contra el sistema copernicano, y se prohibió a Galileo defender esa opinión.

Volviendo a Florencia, Galileo recurrió al problema de determinar longitudes en el mar. También retomó la mecánica, definió correctamente la aceleración uniforme y presentó muchos de sus principios cinemáticos. Pero Galileo tenía una personalidad combativa, y pronto se vio envuelto en una nueva controversia sobre el movimiento de tres cometas en 1618. En una famosa polémica de la ciencia, Il saggiatore, Galileo estableció un enfoque científico general para la investigación de fenómenos celestes sin referencia directa al sistema copernicano. En este ensayo, Galileo repudia cualquier autoridad que contradiga la investigación directa y, por lo tanto, expone la ciencia empírica como el único fundamento del conocimiento del universo. Este trabajo fue publicado en 1623 y dedicado al Papa Urbano VIII. Galileo obtuvo el permiso de su viejo amigo para escribir un libro que discutiría imparcialmente los sistemas copernicano y ptolemaico, llamado algo así como Diálogo sobre los dos principales sistemas mundiales.

Este trabajo, que ocupó a Galileo durante los próximos seis años, consistió en un diálogo entre dos defensores -para los sistemas copernicano y ptolemaico, respectivamente- que intentaban ganarse a un profano para su lado. Galileo permanece oficialmente sin compromiso, excepto en el prefacio; los conceptos importantes incluyen la relatividad y la conservación del movimiento. Las manchas solares y las mareas oceánicas se presentaron como argumentos pro-copernicanos, ya que no se podían explicar sin movimiento terrestre. El libro fue impreso en Florencia en 1632, y pronto se ordenó a su autor que compareciera ante la Inquisición en Roma.

El Papa, aunque alguna vez amigo de Galileo, había sido convencido por los enemigos de Galileo de que el autor hacía deliberadamente que la perspectiva aristotélica pareciera una tontería. El juicio fue llevado a cabo con venganza, y Galileo fue sentenciado a cadena perpetua luego de renunciar a la herejía copernicana. Bajo arresto domiciliario, pasó los años que le faltaban completando su inacabado trabajo sobre mecánica. Hacia 1638, su Discurso y demostración matemática, en torno a dos nuevas ciencias había aparecido en Francia (no podía publicar en Italia, ya que sus obras estaban prohibidas). El contenido trata sobre la ciencia de la ingeniería de los materiales y la ciencia matemática de la cinemática, y subyace en gran parte la física moderna. Tanto el péndulo como el plano inclinado juegan un papel importante en Dos nuevas ciencias, y Galileo deduce el movimiento parabólico de las trayectorias.

Resultado de imagen para galileo

En los últimos cuatro años de su vida, Galileo estuvo ciego, y antes de su muerte se le negó la solicitud de asistir a los servicios de Pascua o consultar a médicos. Finalmente, el 8 de enero de 1642, en Arcetri, Italia, falleció. Sin duda fue uno de los mejores científicos de todos los tiempos, y también un matemático capaz. No solo hizo grandes contribuciones a la ciencia, sino que también avanzó en una nueva epistemología: el conocimiento del mundo natural (incluido el conocimiento matemático) debe adquirirse a través de la razón y la experimentación.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »