Feeds:
Entradas
Comentarios

Posts Tagged ‘Augustin-Louis Cauchy’

George Stokes hizo importantes contribuciones a la teoría matemática de la hidrodinámica, codificando las famosas ecuaciones de Navier-Stokes. Su obra se extiende a la óptica, la gravedad y el estudio del Sol; su trabajo matemático en el área del cálculo vectorial es familiar para los actuales estudiantes universitarios.

SS-stokes.jpg

George Gabriel Stokes nació el 13 de agosto de 1819 en Skreen, Irlanda. Su padre era Gabriel Stokes, un ministro protestante, y su madre era la hija de un ministro. Debido a los antecedentes de sus padres, Stokes y sus hermanos recibieron una educación muy religiosa; era el menor de seis hijos, y sus tres hermanos mayores se convirtieron en miembros del clero. Su infancia fue feliz, llena de actividad física y mental. Aprendió latín de su padre a una edad temprana, y en 1832 realizó estudios adicionales en Dublín. Durante los siguientes tres años en Dublín, Stokes vivió con su tío y desarrolló sus talentos matemáticos naturales. Su padre murió durante este período, lo que lo afectó enormemente. 

En 1835, Stokes ingresó en el Bristol College de Inglaterra y ganó varios premios matemáticos con su inteligencia natural. Sus maestros lo alentaron a buscar una beca en el Trinity College, pero en su lugar se matriculó en Pembroke College, Cambridge, en 1837. Al ingresar tenía poco conocimiento formal de cálculo diferencial, aunque bajo la tutela de William Hopkins llenó rápidamente los vacíos.  Hopkins alentó en él la importancia de la astronomía y la óptica. En 1841 Stokes se graduó ocupando el primer lugar de su clase, y la universidad le otorgó una beca. A estas alturas decidió trabajar como tutor privado y realizar su propia investigación matemática en solitario.

Stokes comenzó su investigación en hidrodinámica, familiarizándose con el trabajo de George Green. En 1842 publicó un trabajo sobre el movimiento de fluidos incompresibles, que más tarde descubrió que era bastante similar a los resultados de Jean Duhamel; sin embargo, la formulación de Stokes fue lo suficientemente original como para merecer su difusión pública. En su trabajo de 1845 sobre hidrodinámica redescubrió las ecuaciones de Claude-Louis-Marie-Henri Navier, pero la derivación de Stokes fue más rigurosa. Parte de la razón de esta duplicación de la investigación era la falta de comunicación entre los matemáticos británicos y continentales. En este momento Stokes también contribuyó a la teoría de la luz y la teoría de la gravedad.

Stokes fue reconocido como un importante matemático en Gran Bretaña: fue nombrado profesor lucasiano de matemática en Cambridge en 1849 y elegido para la Royal Society en 1851. Para complementar sus ingresos, también aceptó un puesto de física en la Escuela de Minas del Gobierno en Londres. Más tarde publicó un importante trabajo que trata el movimiento de un péndulo en un fluido viscoso y realizó importantes contribuciones a la teoría de la difracción de la luz; los métodos matemáticos de Stokes en esta área se convirtieron en clásicos. En 1852 explicó y nombró el fenómeno de la fluorescencia, basándose en su teoría elástica del éter.

En 1857, Stokes se trasladó al trabajo administrativo y empírico, dejando atrás sus estudios más teóricos. Esto se debió en parte a su matrimonio en 1857 con Mary Susanna Robinson, quien le proporcionó una distracción de sus intensas especulaciones. Desempeñó una importante función en la Royal Society, operando como secretario general de 1854 a 1885, y presidió el cargo hasta 1890. Recibió la Medalla Copley de la Royal Society en 1893 y se desempeñó como maestro en Pembroke College de 1902 a 1903. Todo este trabajo administrativo lo distrajo seriamente de su investigación original, pero en ese momento no era atípico que grandes científicos obtuvieran apoyo financiero a través de una variedad de ocupaciones, ya que no había fondos públicos para la investigación.

Stokes murió el 1 de febrero de 1903 en Cambridge, Inglaterra. Fue una profunda influencia en la siguiente generación de científicos de Cambridge, como James Maxwell, y formó un vínculo importante con los matemáticos franceses anteriores que trabajaban en problemas científicos, como Augustin-Louis Cauchy, Siméon Denis Poisson, Navier, Joseph-Louis Lagrange, Pierre-Simon Laplace y Jean Baptiste Joseph Fourier. Su trabajo matemático, que se centró principalmente en problemas de física aplicada más tarde se convirtió en un elemento estándar del plan de estudios de cálculo moderno.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Pocos matemáticos pueden compararse con Bernhard Riemann en términos de creatividad y profundidad de conocimiento. No solo encontró la nueva disciplina de la geometría riemanniana que se volvería tan importante para la teoría de la relatividad general un siglo más tarde, sino que también avanzó significativamente en otros campos de la matemática, incluido el análisis complejo, la teoría de funciones elípticas, las ecuaciones diferenciales y la teoría de la integración y topología. Es quizás más famoso por descubrir la función zeta de Riemann, que es importante para la teoría analítica de números. Como las de muchos genios, las ideas de Riemann eran tan avanzadas que pocos podían aceptarlas inmediatamente; después de su temprana muerte, el impacto de su investigación comenzó a apreciarse.

Georg Friedrich Bernhard Riemann nació el 17 de septiembre de 1826 en Breselenz, Alemania. Su madre fue Charlotte Ebell, y su padre Friedrich Bernhard Riemann. Riemann mantuvo una estrecha relación con su padre, un ministro luterano, durante toda su vida. Fue el segundo de seis hijos. Su padre lo educó personalmente hasta que tenía 10 años, y en 1842 el niño ingresó en el Johanneum Gymnasium en Lüneburg. Era un buen alumno, pero aún no mostraba un talento extraordinario en la matemática. Aunque sus estudios principales fueron clásicos y teológicos, se interesó por la matemática después de devorar rápidamente un libro de teoría de números de Adrien-Marie Legendre.

En 1846, Riemann se matriculó en la Universidad de Göttingen, donde siguió estudiando matemática. Aunque Carl Friedrich Gauss enseñaba allí en ese momento, no reconoció el talento de Riemann, al igual que algunos de sus otros maestros. Al año siguiente, Riemann se trasladó a la Universidad de Berlín, donde pudo estudiar con Carl Jacobi y Peter Lejeune Dirichlet; este último fue especialmente influyente en Riemann, quien adoptó su enfoque intuitivo y no computacional para las ideas matemáticas. Gran parte del trabajo de Riemann carecía del rigor preciso común en ese momento: centró sus energías en desarrollar conceptos y marcos correctos para comprender la matemática. Durante este tiempo formuló los principios básicos de su teoría de variables complejas.

Riemann regresó a Göttingen en 1849 para un trabajo de doctorado, y presentó su tesis, dirigida bajo la supervisión de Gauss, en 1851. Este trabajo presenta los objetos geométricos que se conocieron como superficies de Riemann. Fue influenciado por ideas de la física y la topología, y aplicó estas técnicas en su análisis de estas superficies, basándose en la teoría más básica de las variables complejas de Augustin-Louis Cauchy. Algunos de sus resultados se probaron utilizando una técnica variacional conocida como principio de Dirichlet (Riemann atribuyó el método a Dirichlet, aunque Gauss y otros lo habían desarrollado anteriormente). Esta tesis fue sorprendente por su originalidad, incluso el soberano Gauss quedó impresionado.

Para su trabajo postdoctoral, Riemann comenzó a investigar la representación de funciones en términos de una base de funciones trigonométricas (análisis de Fourier); en el curso de su investigación, desarrolló una rigurosa teoría de la integración, construyendo lo que más tarde se conocería como la integral de Riemann de una función. Estaba trabajando en Göttingen, y Gauss le exigió que diera una conferencia sobre geometría para completar su beca; la conferencia de Riemann sobre geometría más tarde se hizo muy famosa, ya que estableció los principios básicos y las ideas claves detrás de la teoría de la geometría diferencial. Esta conferencia de 1854 desarrolló conceptos generales de espacio, dimensión, líneas rectas, métricas, ángulos y lugares tangentes para superficies curvas. El resultado de esta exposición notablemente original fue el establecimiento de la geometría diferencial como un campo importante de investigación matemática (hubo trabajos anteriores sobre geometría diferencial, pero Riemann plantó las ideas principales que continuarían guiando el tema a lo largo del próximo siglo), que luego resultó tener una aplicación notable a la teoría general de la relatividad: Albert Einstein, a principios del siglo XX, describió la fuerza de la gravedad como esencialmente una curvatura del espacio, y la teoría geométrica de Riemann fue la base matemática perfecta para esta importante nueva rama de la física.

Esta conferencia probó el concepto fundamental de espacio con una profundidad notable, y pocos científicos y matemáticos pudieron apreciar el genio extraordinario del pensamiento penetrante de Riemann; quizás solo Gauss fue capaz de comprender verdaderamente el significado del nuevo paradigma. Riemann luego pasó a la teoría de las ecuaciones diferenciales parciales, tema sobre el que dio un curso con poca asistencia. Obtuvo una cátedra en Göttingen en 1857, el mismo año en que publicó la teoría de las funciones abelianas. Este trabajo investiga más a fondo las propiedades topológicas de las superficies de Riemann, así como los llamados problemas de inversión. Aunque otros matemáticos, incluido Karl Weierstrass, trabajaban en esta área, el trabajo de Riemann fue tan amplio que se convirtió en un pensador destacado en esta rama de la matemática. Riemann utilizó nuevamente el principio de Dirichlet para sus resultados, y Weierstrass declaró que no era válido para las aplicaciones de Riemann. La búsqueda de una prueba alternativa durante las siguientes décadas condujo a varios otros desarrollos algebraicos fructíferos; David Hilbert finalmente dio la formulación correcta y la prueba de los resultados de Riemann a finales de siglo. Como resultado de la correcta crítica de Weierstrass, muchos matemáticos abandonaron las teorías desarrolladas por Riemann, quien sostuvo que eran ciertas.

En 1858, Riemann recibió la visita de Enrico Betti, quien importó las ideas topológicas de Riemann a su propio trabajo. El año siguiente murió Dirichlet, y Riemann lo reemplazó como presidente de matemática en Göttingen; también fue elegido para la Academia de Ciencias de Berlín a través de las fuertes recomendaciones de Ernst Eduard Kummer y Weierstrass. La siguiente área de investigación de Riemann fue la teoría de números: exploró la función zeta, ya definida por Leonhard Euler, extendiéndola primero al plano complejo. Esta función zeta da la suma de varias series infinitas y ya se sabía que estaba relacionada con el conjunto de números primos. El trabajo de Riemann amplió enormemente el conocimiento de esta función, así como sus aplicaciones; la famosa hipótesis de Riemann, que sigue sin resolverse hoy en día, establece que todas las raíces no triviales de la función zeta se encuentran en la línea en el plano complejo definida por los números complejos cuya parte real es igual a un medio. Esta extraña conjetura ha sido ampliamente verificada numéricamente, pero una prueba completa ha escapado a los esfuerzos concertados de cientos de matemáticos. La función zeta tiene varias aplicaciones para la teoría numérica analítica, como estimar el número de primos menores que un entero dado.

Riemann sufrió de mala salud durante toda su vida. Su constitución débil más tarde impediría su investigación y le quitaría la vida prematuramente. Se casó con Elise Koch en 1862, pero poco después contrajo un resfriado y luego desarrolló tuberculosis. Pasó gran parte de su tiempo en los próximos años en el extranjero, en Italia, con la esperanza de que el clima más suave alivie su enfermedad. Regresó a Göttingen en 1865, y su salud declinó rápidamente a partir de entonces; viajó a Italia en 1866 nuevamente por razones de salud, pero no se recuperó. Murió el 20 de julio de 1866 en Selasca, Italia.

Riemann fue fácilmente uno de los matemáticos más influyentes y creativos del siglo XIX y, de hecho, de toda la historia. Afectó de manera significativa la geometría y el análisis complejo sobre todo, proporcionando esencialmente el marco a través del cual se estudian estos temas hoy. Y las preguntas y los problemas profundos que abordó en el campo de la geometría son extremadamente relevantes para las concepciones modernas del universo físico. Su trabajo en teoría de números ha estimulado un esfuerzo de investigación sin igual: la investigación de la función zeta de Riemann debe ser uno de los campos de actividad matemática más concurridos. Gauss estaría de acuerdo en que Riemann fue sin duda uno de los mejores matemáticos que este mundo ha visto.

En Septiembre del año pasado (2018) ocurrió un hecho de gran trascendencia en Heidelberg Laureate Forum. El matemático Michael Atiyah (1929-2019) anunciaba haber demostrado finalmente la Hipótesis de Riemann. Su conferencia fue vista por decenas de miles de personas por internet y numerosos ciudadanos mostraron su entusiasmo en Twitter, alabando al octogenario experto: “Los héroes a veces no llevan capa”.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Claude Navier es hoy más famoso por las ecuaciones de Navier-Stokes, que describen la dinámica de un fluido incompresible. Es responsable de introducir técnicas analíticas en ingeniería civil, y la fertilización cruzada entre matemática e ingeniería que inició Navier benefició a ambas disciplinas.

Claude Navier nació el 10 de febrero de 1785 en Dijon, Francia. Fue criado en medio del furor de la Revolución Francesa. Su padre era abogado y miembro de la Asamblea Nacional y murió cuando Claude tenía sólo ocho años. Su madre se retiró al campo, dejando al niño en París al cuidado de su tío abuelo Emiland Gauthey, quien era el ingeniero civil más famoso de la época, y pudo haber ejercido cierta influencia sobre el joven Navier.

Navier ingresó en la École Polytechnique en 1802, apenas cumpliendo con los requisitos de ingreso debido a su mediocridad escolástica. Sin embargo, hizo un gran progreso en su primer año, llegando al top 10 de su clase. Uno de los maestros de Navier fue Jean Baptiste Joseph Fourier, quien tuvo un impacto significativo en el desarrollo matemático de Navier. Los dos hombres siguieron siendo amigos de toda la vida. En 1804 Navier se matriculó en la École des Ponts et Chaussées, graduándose dos años después. Cuando Emiland Gauthey murió poco después, el Corps des Ponts et Chaussées le pidió a Navier que editara las obras completas de su tío abuelo. Al hacerlo, Navier ganó una apreciación de la ingeniería civil como una aplicación de la mecánica, e insertó muchos elementos del análisis matemático en los escritos de Gauthey.

Durante la siguiente década, Navier fue reconocido como un destacado académico en ciencias de la ingeniería, y tomó una posición en la École des Ponts et Chaussées en 1819. Hizo mucho hincapié en los fundamentos matemáticos y analíticos de la ingeniería, y esto fue evidente en su estilo de enseñanza. Fue nombrado profesor allí en 1830 y reemplazó a Augustin-Louis Cauchy en la École Polytechnique en 1831.

Navier tenía experiencia especial en la construcción de puentes. Tradicionalmente, los puentes se construían sobre principios empíricos, pero Navier desarrolló una teoría matemática para los puentes colgantes. Intentó probar sus ideas construyendo un puente colgante sobre el Sena, pero el consejo municipal contrarrestó sus esfuerzos y finalmente desmanteló su puente parcialmente completo.

Durante su vida, Navier fue reconocido como un ingeniero civil líder, pero hoy en día es famoso por su pionero trabajo matemático en mecánica de fluidos. Navier trabajó en problemas matemáticos aplicados, como la elasticidad, el movimiento de fluidos y las aplicaciones de la serie de Fourier a cuestiones de ingeniería. En 1821 dio las ecuaciones diferenciales de Navier-Stokes para el movimiento de fluidos incompresibles. Hoy se sabe que su derivación es incorrecta, ya que descuidó considerar el efecto de las fuerzas de corte; sin embargo, sus ecuaciones fueron, providencialmente, correctas.

Navier no era especialmente activo en política, aunque favorecía una posición socialista, alineándose con filósofos sociales como Auguste Comte. Creía en el poder de la ciencia y la tecnología para resolver problemas sociales. Se opuso a la propagación de la violencia a través del complejo militar y, en particular, resistió el belicismo de Napoleón.

Navier recibió muchos honores en su vida, incluido ser elegido para la Academia de Ciencias en 1824. A partir de 1830, Navier trabajó como consultor del gobierno sobre cómo la ciencia y la tecnología podrían usarse para mejorar el país. Murió el 21 de agosto de 1836 en París, Francia. Su contribución más importante radica en las ecuaciones de Navier-Stokes para el flujo de fluidos, que se estudiaron en gran medida en física e ingeniería y se aplicaron en muchos ámbitos técnicos. Navier también debe ser recordado por su introducción de la matemática y la física en la ingeniería civil, lo que resultó en una ciencia más moderna y efectiva.


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Older Posts »