Feeds:
Entradas
Comentarios

Posts Tagged ‘Bertrand Arthur William Russell’

Los matemáticos griegos clásicos rehuyeron el estudio del infinito, tanto lo infinitamente grande como lo infinitamente pequeño (lo infinitesimal). Los infinitesimales son la piedra angular del cálculo, y muchos griegos, como Arquímedes de Siracusa, dieron los primeros pasos vacilantes hacia un descubrimiento completo del cálculo. Sin embargo, la mayoría rechazó la noción de cantidades infinitamente divisibles, como un continuo, y esta reacción se debió en gran parte a las paradojas de Zenón.

Zenón de Elea nació aproximadamente en el año 490 a.C. en Elea, Italia. Él es de ascendencia griega a pesar de su nacimiento en Italia, y es considerado en la historia miembro del grupo de filósofos griegos. Existe muy poca información confiable sobre su vida, pero se dice que su padre era Telautagoras. Zenón finalmente estudió en la escuela de filosofía de Elea, donde conoció a su maestro Parménides. La escuela eleática, fundada por Parménides, enseñó el monismo, el concepto de que todo es uno. Esta filosofía influyó en Zenón para formular varias paradojas que desafiaban los conceptos de divisibilidad infinita.

Platón afirma que Zenón y Parménides viajaron a Atenas en el 450 a.C., donde se encontraron con el joven Sócrates y discutieron filosofía con él. Antes de viajar a Atenas, Zenón ya había adquirido cierta fama a través de la publicación de un libro (que no ha sobrevivido) que contenía 40 paradojas. Estas paradojas forman una disección profundamente estimulante del concepto del continuo, perturbando así las cómodas nociones de cosas comunes como el movimiento, el tiempo y el espacio. Una de las suposiciones de Zenón es la divisibilidad: si una magnitud se puede dividir en dos, entonces se puede dividir para siempre. El trabajo de Richard Dedekind luego establecería esta propiedad de continuo para los números reales. Zenón también asumió que no existe ningún objeto de magnitud cero (no lo expresó de esta manera, ya que los griegos no tenían el cero).

En la paradoja llamada “La dicotomía”, Zenón afirma que para atravesar una distancia, primero es necesario atravesar la mitad de esa distancia; pero para llegar a la mitad, primero se requiere ir un cuarto del camino. Continuando con este razonamiento indefinidamente, Zenón concluye que comenzar es imposible y que, por lo tanto, el movimiento es imposible. Esta paradoja generalmente se resuelve sumando la serie geométrica de potencias recíprocas de dos. En “La flecha”, Zenón declara que el movimiento es imposible, porque (suponiendo que la instancia actual de tiempo “ahora” es indivisible) si una flecha se mueve cierta distancia en un instante de tiempo indivisible, entonces se movió la mitad de esa distancia en la mitad del tiempo, lo que resulta en una división del instante. Esto puede resolverse permitiendo que el tiempo sea un continuo, infinitamente divisible.

La paradoja más famosa de Zenón es la de Aquiles: establece que se ejecuta una carrera entre el héroe griego Aquiles y una tortuga, donde la lenta tortuga comienza con una ventaja. Después de un tiempo, Aquiles alcanza la mitad de la distancia intermedia. Pero la tortuga ha seguido su camino; Aquiles luego corre la mitad de la distancia restante, pero nuevamente la tortuga ha avanzado más. ¡Llevando este argumento hasta el infinito, Zenón concluye que Aquiles nunca puede ponerse al día! Esto también se puede resolver configurando una serie geométrica adecuada. Sin embargo, las resoluciones de estas paradojas se basan en ciertas nociones de infinito y propiedades del continuo. La estructura matemática detrás de estos conceptos no se desarrolló hasta muchos siglos después. Sir Isaac Newton, Gottfried Leibniz y Blaise Pascal sentaron las bases modernas del cálculo. A finales del siglo XIX, Georg Cantor, Friedrich Ludwig Gottlob Frege y Bertrand Arthur William Russell realizaron trabajos más avanzados sobre el continuo, así como las propiedades básicas de los números reales, entre otros. Por lo tanto, la influencia de Zenón fue de gran alcance, ya que hizo algunas preguntas muy profundas sobre el tiempo, el espacio y el movimiento.

Zenón murió en algún momento alrededor del año 425 a.C., y una fuente cuestionable relata que fue ejecutado después de un intento fallido de eliminar a un tirano de Elea. Aunque era filósofo, las ideas de Zenón provocaron una revolución matemática milenios después, ya que sus paradojas apuntaban a la necesidad de proporcionar una base rigurosa a los conceptos intuitivos del espacio y el tiempo. Sus paradojas sobre el movimiento demostraron las dificultades de considerar la velocidad como una distancia dividida por el tiempo, ya que esta relación parece ser cero dividida por cero cuando el tiempo transcurrido de viaje se reduce a cero; solo con el descubrimiento de límites e infinitesimales en la disciplina del cálculo diferencial se resolvió este enigma. Además de proporcionar una gran cantidad de obstáculos mentales para los intelectuales posteriores, Zenón también sirvió para inhibir el crecimiento de las matemáticas griegas para abarcar el infinito; por lo tanto, fue una influencia retardadora clásica, pero milenios más tarde se convirtió en un impulso para el desarrollo matemático.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Norbert Wiener fue uno de los grandes matemáticos estadounidenses del siglo XX. Sus ideas fueron profundas y ricas, aunque mal expresadas, y aún así revolucionaron la teoría de las comunicaciones y el análisis armónico. Wiener también es famoso por fundar la disciplina de la cibernética o la aplicación de ideas estadísticas a la comunicación.

Resultado de imagen para Norbert Wiener

Norbert Wiener nació el 26 de noviembre de 1894 en Columbia, Missouri. Su padre, Leo Wiener, era un judío ruso que había emigrado a los Estados Unidos, y ejercía como profesor de idiomas modernos en la Universidad de Missouri en el momento del nacimiento de su hijo. La madre de Wiener era una judía alemana originalmente llamada Bertha Kahn. Tenía una hermana menor. Debido a los extensos intereses intelectuales de su padre (publicó varios libros y fue ampliamente leído en ciencias), Wiener recibió una excelente educación en su hogar que lo situó mucho más allá de los niños de su misma edad. De hecho, Wiener comenzó la escuela secundaria a la edad de nueve años y se graduó en 1906.

Parece que el padre de Wiener fue en gran parte responsable del desarrollo del genio de su hijo. De niño era bastante torpe y tenía problemas en la vista; cuando el médico le recomendó que dejara de leer durante seis meses, su padre continuó su educación matemática. Como resultado, Wiener desarrolló grandes capacidades para la memorización y el cálculo mental a una edad temprana. La familia de Wiener se había mudado a Boston, Leo Wiener enseñaba en Harvard, y el niño asistió al Tufts College. Se graduó en 1909 con una licenciatura en matemática, y comenzó la escuela de posgrado en Harvard con solo 14 años de edad.

Originalmente Wiener estudió zoología, pero luego cambió a filosofía, obteniendo su doctorado en Harvard a los 18 años. Luego viajó a Inglaterra para continuar sus estudios filosóficos con Bertrand Arthur William Russell, quien le dijo que necesitaba aprender más matemática. Entonces Wiener estudió con Godfrey Harold Hardy, y pasó la mayor parte de 1914 en la Universidad de Gotinga estudiando ecuaciones diferenciales con David Hilbert. Regresó a los Estados Unidos antes del estallido de la Primera Guerra Mundial, y emprendió varios trabajos extraños: enseñó filosofía en Harvard, trabajó para la General Electric y también fue redactor de la Encyclopedia Americana. Al final de la guerra obtuvo un puesto en el Instituto de Tecnología de Massachusetts (MIT).

Fue en el MIT que Wiener comenzó a estudiar el movimiento browniano, un concepto importante en la probabilidad (es un proceso estocástico de tiempo continuo utilizado para modelar una variedad de fenómenos, desde el movimiento de pequeñas partículas hasta la evolución del mercado de valores) y otros temas de probabilidad También investigó el análisis armónico y su aplicación a la teoría estadística de series de tiempo. Gran parte del trabajo que encontró Wiener resultó de conversaciones con sus colegas de ingeniería, que estaban ansiosos por obtener asistencia matemática con sus propios problemas de ingeniería.

Wiener viajaba con frecuencia a Francia, Alemania e Inglaterra para colaborar con matemáticos europeos: trabajó con René-Maurice Fréchet y Paul-Pierre Lévy. Se casó con Margaret Engemann en 1926. Pasó 1931–32 en Inglaterra trabajando con Hardy, donde también conoció a Kurt Gödel.

El genio de Wiener ciertamente cumplió muchos de los estereotipos comunes de los matemáticos. Sus artículos a menudo eran difíciles de leer, y los descubrimientos brillantes no eran suficientes; a veces, se lanzaba con gran detalle sobre asuntos triviales. A pesar de sus pobres habilidades de escritura, las contribuciones de Wiener fueron sobresalientes. Su trabajo de 1921 sobre el movimiento browniano estableció esta importante idea de la física de partículas sobre una base teórica sólida; su investigación adicional sobre el espacio de curvas continuas y unidimensionales condujo a la intuitivamente atractiva medida de Wiener, que facilitó el cálculo de las probabilidades de los caminos del movimiento browniano. En 1923 investigó la ecuación diferencial parcial conocida como problema de Dirichlet, y esto condujo a grandes avances en la teoría del potencial. Desde 1930 trabajó en análisis armónico, ganando el premio Bôcher de la American Mathematical Society en 1933. Wiener profundizó en las diversas aplicaciones de la transformada de Fourier: una gran aplicación fue el llamado análisis espectral de series de tiempo. Con las herramientas que desarrolló fue posible filtrar, pronosticar y suavizar los flujos de datos. Su Cybernetics: Or, Control and Communication in the Animal and the Machine de 1948 aplicó ideas en campos tales como sistemas mecánicos hasta biología. Aparentemente, este trabajo fue un desastre caótico de texto mal escrito y destellos brillantes de perspicacia.

Wiener murió el 18 de marzo de 1964 en Estocolmo, Suecia. Este niño prodigio fue un conferenciante notoriamente pobre, un escritor descuidado y un pensador sobresaliente. Su trabajo más importante fue en la teoría de la probabilidad y el análisis armónico, y su influencia todavía se siente hoy en temas como ecuaciones diferenciales parciales, procesos estocásticos y el análisis estadístico de series de tiempo.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Bertrand Russell fue una de las personalidades matemáticas más coloridas del siglo XX, y se encuentra entre los lógicos más importantes de la era moderna. Creía en el potencial de que toda la matemática se redujera a la lógica y ejerció mucho esfuerzo para validar este paradigma. Russell también fue un activo filósofo y revolucionario social, aplicando sus ideas lógicas a la ciencia, la ética y la religión.

Resultado de imagen para russell

Bertrand Russell nació el 18 de mayo de 1872 en Ravenscroft, Gales. Era nieto de lord John Russell. Su madre y su padre murieron en 1874 y 1876, respectivamente, por lo que sus abuelos lo criaron. Este abuelo había servido dos veces como primer ministro bajo la reina Victoria, pero murió en 1878 y su abuela continuó con la educación del niño. Recibió educación privada al principio, y luego fue instruido en el Trinity College, en Cambridge, donde obtuvo los primeros logros en la matemática.

Russell se convirtió en académico, y finalmente fue elegido miembro de la Royal Society en 1908. Pasó sus primeros años en su programa centrado en la lógica, creyendo que toda la matemática podía reducirse a afirmaciones lógicas. En este sentido, era seguidor de Friedrich Ludwig Gottlob Frege, quien tenía una filosofía similar. El trabajo de Russell de 1910 sobre los Principia Mathematica, escrito junto con Alfred North Whitehead, estableció que las pruebas matemáticas podrían reducirse a pruebas lógicas. Los primeros volúmenes de este trabajo trataron sobre teoría de conjuntos, aritmética y lateoría de la medida; un cuarto volumen, sobre geometría, no fue completado. Parte de este enfoque, inspirado en las ideas de Frege, fue expresar los números y otros objetos matemáticos como conjuntos de clases que comparten una propiedad común. Este ambicioso proyecto perdió fuerza en los últimos años, probablemente debido a las tendencias filosóficas que se alejan del logicismo.

Antes de los Principia, Russell adquirió fama a través de la construcción de la llamada paradoja de Russell. Formó el conjunto (conjunto A) de todos los conjuntos que tienen la propiedad de que no son miembros de sí mismos. Luego uno hace la pregunta: ¿Es A (visto como un elemento) un miembro del conjunto A? Esto no se puede resolver como verdadero o falso, ya que cualquiera de las respuestas conduce a una contradicción. Esto demostró el problema fundamental de tomar colecciones de conjuntos y suponer que dicha colección es en sí misma un conjunto. Kurt Gödel utilizará posteriormente este concepto de autorreferencia para producir sus teoremas de incompletitud. 

La solución de Russell a la paradoja fue desarrollar su teoría de tipos, principalmente desarrollada en su lógica matemática de 1908, basada en la teoría de tipos. En esto Russell describió una jerarquía de clases para la cual la idea de conjunto está especialmente definida en cada nivel. Otras resoluciones a la paradoja han resultado del debilitamiento del poder del axioma básico de comprensión formulado por George Cantor, que establece que siempre se pueden reunir objetos que comparten una propiedad común en un conjunto. La consecuencia inmediata de la paradoja fue poner en duda el programa lógico propuesto por David Hilbert, que buscaba establecer rigurosamente los fundamentos de la lógica matemática y la teoría de conjuntos. Parecía que incluso el concepto intuitivo de conjunto se proyectaba en la sombra.

Además de estas importantes contribuciones a la lógica, Russell también fue famoso por su “filosofía analítica”, que intentaba plantear cuestiones filosóficas en el riguroso marco de la lógica matemática. Por supuesto, este enfoque computacional de la filosofía tiene una larga historia, que se remonta a René Descartes y otros matemáticos.

La vida personal y pública de Russell interfirió con el avance de su carrera. Fue declarado culpable de actividad contra la guerra en 1916, y esto resultó en su despido del Trinity College. Dos años más tarde fue nuevamente condenado y sometido a una breve pena de prisión. Durante su encarcelamiento, escribió su famosa Introducción a la Filosofía Matemática (1919). Tropezó con cuatro matrimonios que estuvieron plagados de asuntos extra matrimoniales, e incluso fue despedido de un puesto de profesor en el City College de Nueva York en 1940 después de que un juez dictaminó que era moralmente incapaz. Se postuló (pero no fue elegido) para el Parlamento tres veces; se convirtió en Earl Russell en 1931 después de la muerte de su hermano. Abrió una escuela experimental con su segunda esposa a finales de los años veinte. Sus sentimientos contra la guerra ganaron una mejor aceptación en las décadas de 1950 y 1960, cuando fue reconocido como líder en el movimiento antinuclear. El manifiesto de Russell-Einstein de 1955 exigía el abandono de las armas nucleares. En 1957, Russell organizó la Conferencia Pugwash, una convención de científicos contra las armas nucleares, y se convirtió en presidente de la Campaña por el Desarme Nuclear en 1958. Russell fue arrestado nuevamente en 1961 por protestas nucleares. 

Después de una vida llena de matemática, filosofía y protesta pública, Russell murió el 2 de febrero de 1970 en Penrhyndeudraeth, Gales. Fue reconocido por sus extensas contribuciones a la literatura y la ciencia, ganando el Premio Nobel de literatura en 1950. Es mejor conocido por su paradoja y su posterior resolución a través de la teoría de tipos, pero también a través de sus investigaciones posteriores sobre el logicismo y el problema de la incompletitud estudiado por Gödel. El pensamiento de Russell ha sido enormemente influyente en la lógica, la matemática y la filosofía, así como en la ética, la religión y la responsabilidad social. 

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »