Feeds:
Entradas
Comentarios

Posts Tagged ‘Bertrand Russell’

A principios del siglo XX, tres escuelas de pensamiento dominaban la lógica matemática: el formalismo, el intuicionismo y el logicismo. El formalismo enseñaba que la matemática era principalmente una sintaxis en la cual se introduce el significado, el intuicionismo enfatizaba el papel de la intuición sobre la razón pura, y el logicismo veía la matemática como parte de la lógica. Kurt Gödel estableció un nuevo modo de pensamiento, a saber, que la lógica matemática era una rama de la matemática, que tenía solo ramificaciones indirectas en la filosofía. Sus teoremas, especialmente su teorema de incompletitud, le han valido una considerable fama como matemático de primer nivel, ya que su trabajo es extremadamente relevante para las preguntas epistemológicas (preguntas relacionadas con los fundamentos del conocimiento). 

Kurt Gödel nació el 28 de abril de 1906 en Brno, República Checa, que en ese momento era parte del Imperio austriaco. Rudolf Gödel, su padre, era un tejedor que finalmente obtuvo una cantidad significativa de propiedades. Marianne Handschuh, su madre, tuvo una educación liberal, y la casa en la que crecieron Gödel y su hermano mayor Rudolf fue de clase alta. Gödel tuvo una infancia feliz, y era llamado “Sr. Por qué” por su familia, debido a sus numerosas preguntas. Fue bautizado como luterano y permaneció como teísta (creyente en un Dios personal) durante toda su vida. 

Gödel avanzó rápidamente a través de la escuela, sobresaliendo en matemáticas, idiomas y religión en una escuela secundaria alemana en Brno. También se interesó en la filosofía después de 1920, y el famoso filósofo Immanuel Kant fue influyente a lo largo de la vida de Gödel. Cuando se graduó en 1924, Gödel ya dominaba gran parte de las matemáticas universitarias, y por eso estaba muy bien preparado para ingresar a la Universidad de Viena. Inicialmente consideró tomar un título en física, pero después de algunas clases de teoría de números, Gödel se cambió a la matemática. De 1926 a 1928 estuvo involucrado en el Círculo de Viena, un grupo de positivistas lógicos interesados en la epistemología. Poco a poco, Gödel se alejó de estos filósofos debido a su propia posición platónica. El platonismo, tal como se aplica a la filosofía de la matemática, defiende la creencia en la verdadera realidad abstracta de los objetos matemáticos (como los números), que alcanzan realizaciones particulares concretas en el mundo. 

En 1929 murió el padre de Gödel, y en el mismo año Gödel completó su disertación. Recibió su doctorado en matemática en 1930. Este documento proporcionaba el teorema de completitud para la lógica de primer orden, que mostraba que cada fórmula válida en lógica de primer orden era demostrable. El término completitud se refiere a la cuestión de si cada teorema matemático verdadero tiene una prueba; por lo tanto, los sistemas incompletos son algo místicos, ya que contienen afirmaciones verdaderas que no pueden establecerse solo a través de la razón y la lógica. Más tarde, en 1930, Gödel anunció su famoso teorema de la incompletitud: existen proposiciones verdaderas de la teoría de números para las cuales no existe ninguna prueba. Este resultado tuvo enormes ramificaciones en la matemática, ya que destruyó efectivamente los esfuerzos de los matemáticos para construir un cálculo lógico que probaría todas las afirmaciones verdaderas; también influyó en la filosofía y la epistemología. La versión filosófica del teorema dice que en cualquier sistema de pensamiento, uno no puede producir una prueba para cada enunciado verdadero, siempre y cuando uno esté restringido a ese sistema. 

En los años siguientes, Gödel publicó numerosos artículos sobre lógica y trabajó como profesor en la Universidad de Viena. Aunque la extrema timidez lo convirtió en un pobre orador público, el contenido de sus conferencias incluía la investigación más reciente sobre los fundamentos de la matemática. En 1933 visitó el Instituto de Estudios Avanzados en Princeton donde pasaría cada vez más tiempo a medida que empeoraba la situación política en Europa. Gödel también sufría de depresión mental, y estuvo internado en un sanatorio en Europa en 1934 después de un ataque de nervios. En 1935 regresó a los Estados Unidos y continuó su importante trabajo nuevo en la teoría de conjuntos, obteniendo un avance significativo en relación con el axioma de elección. Poco después renunció, sufriendo de exceso de trabajo y depresión, y regresó a Austria. Su trabajo de este período de tiempo mostró que el axioma de elección y la hipótesis del continuo, dos postulados importantes de la teoría de conjuntos, eran relativamente consistentes (consistencia significa que un postulado dado no contradice los otros axiomas del sistema). 

En 1938 Gödel se casó con Adele Porkert Nimbersky, una bailarina de discoteca. Pronto se vieron obligados a huir a los Estados Unidos debido a la persecución nazi en Austria: la asociación de Gödel con judíos y liberales lo convirtió en blanco de la discriminación. Se le impidió continuar su cátedra en Viena, e incluso fue atacado por estudiantes de derecha. Como resultado, Gödel y su esposa regresaron a Princeton en 1940, escapando de Austria hacia el este a través del Ferrocarril Transiberiano. 

En Princeton, el introvertido Gödel tenía una vida social tranquila; sin embargo, desarrolló algunas amistades cercanas con sus colegas, incluido Albert Einstein. Fuera de esta relación, Gödel se interesó cada vez más por la teoría de la relatividad; más tarde, después de 1947, contribuyó a la cosmología presentando modelos matemáticos en los que el viaje en el tiempo era lógicamente posible. En 1943, Gödel recurrió cada vez más a la investigación filosófica, donde expresó sus puntos de vista platónicos y criticó el logicismo de Bertrand Russell. 

En la última parte de su vida, Gödel recibió numerosos honores y premios, como el Einstein Award en 1951 y la National Medal of Science en 1974. Es interesante que se negó rotundamente a recibir honores de las instituciones académicas austriacas debido al tratamiento previo que recibió. En 1953 se convirtió en profesor titular en el instituto, continuó su trabajo sobre lógica y cosmología, y en 1976 se retiró como profesor emérito. Murió el 14 de enero de 1978, en Princeton, después de sufrir depresión, paranoia y desnutrición: creyendo que su comida estaba siendo envenenada, Gödel se negó a comer y murió de hambre. 

Kurt Gödel hizo descubrimientos extraordinarios en lógica matemática y teoría de conjuntos. Su trabajo en cosmología y filosofía también es digno de mención. Gödel estableció esencialmente el marco para las investigaciones modernas. Como demostró que la teoría de números era incompleta, el proyecto de David Hilbert y los lógicos anteriores para mecanizar la demostración de la matemática se volvió impráctico. En cambio, los lógicos comenzaron a enfocarse en las preguntas de integridad y consistencia de varios tipos de sistemas lógicos. Este cambio de paradigma se debió al épico teorema de incompletitud de Gödel. Sus resultados sobre el axioma de elección y la hipótesis del continuo enfatizaron la naturaleza relativa de cualquier respuesta a estas preguntas; también aquí un nuevo y rico campo de investigación teórica se generó a partir de los descubrimientos iniciales de Gödel. En un sentido más amplio, las ideas de Gödel han influido en innumerables filósofos y científicos informáticos, con ramificaciones en epistemología e inteligencia artificial.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

Gottlob Frege realizó un trabajo sustancial en lógica matemática durante el siglo XIX; de hecho, es visto por muchos como el padre de la lógica matemática moderna. El lenguaje que creó para analizar rigurosamente la aritmética se desarrollaría luego en la sintaxis y la notación de la teoría de la demostración moderna. 

Gottlob Frege nació el 8 de noviembre de 1848 en Wismar, Alemania, hijo de Alexander Frege y Auguste Bialloblotzky. Su padre era director de una escuela secundaria para niñas en Wismar, y Gottlob asistió al Gymnasium allí. De 1869 a 1871 fue alumno en Jena, y después de este período se matriculó en la Universidad de Göttingen, donde tomó cursos de matemática, física, química y filosofía. Dos años más tarde obtuvo su doctorado en filosofía con la tesis Über eine geometrische Darstellung der imaginaren Gebilde in der Ebene (Sobre una representación geométrica de cosas imaginarias en el plano). Su disertación de 1874 se refería a ciertos grupos de funciones. En esta época, comenzó a trabajar en el proyecto de proporcionar una base rigurosa a la aritmética. Frege deseaba definir el número y la cantidad de una manera satisfactoria, y recurrió a la lógica como un vehículo apropiado.  

En este período de la historia, había poco en el camino acerca de un tratamiento coherente de la lógica matemática. Como Frege quería ser preciso en su desarrollo de la teoría de números, decidió construir un lenguaje de lógica para formular sus ideas. Las herramientas para analizar demostraciones matemáticas se publicaron en Begriffschrift en 1879, y algunas de las ideas de su disertación en Jena entraron en su concepto de cantidad. En el mismo año, fue nombrado profesor extraordinario en Jena, y fue nombrado profesor honorario en 1896. Su diligente trabajo hacia la construcción lógica de la aritmética a lo largo de los años dio lugar a su Grundgesetze der Arithmetik en dos volúmenes (Leyes básicas de la aritmética) ) (1893-1903). En 1902 Bertrand Russell señaló una contradicción en el sistema de la aritmética de Frege; este comentario resultó ser desastroso, ya que Frege no pudo encontrar ninguna forma de remediar el problema. De hecho, como demostraría el trabajo posterior de Kurt Gödel, cualquier esfuerzo para construir teorías de números completas y consistentes estaba condenado al fracaso. 

El Begriffschrift debe verse como un lenguaje formal, como un vehículo, para el pensamiento puro. Este lenguaje consistía en varios símbolos (como letras) que podían combinarse de acuerdo con ciertas reglas (la gramática) para formar enunciados. Al igual que con la aritmética, después de la cual se modeló el lenguaje de Frege, se podían realizar cálculos cuyo resultado sería un cálculo lógico en lugar de una cantidad numérica. La idea de un cálculo lógico se remonta al menos a Gottfried Leibniz, quien supuso que un día todo el debate filosófico podría reducirse a cálculos lógicos. El cálculo de Frege podía usarse para formalizar la noción de una demostración matemática, de modo que uno pudiera, esencialmente, calcular la conclusión.  

Los componentes básicos del cálculo de Frege son un símbolo de afirmación (representado por un trazo vertical), un símbolo condicional (por ejemplo, A implica B) y una regla de deducción que establece lo siguiente: si afirmamos A y A implica B, entonces podemos afirmar B. Frege también desarrolló la notación para la negación, y demostró que el “y” y el “o” podían expresarse en términos de los símbolos condicional y de negación. Además de estas nociones básicas, añadió una teoría de la cantidad, definiendo rigurosamente nociones tales como “para todo” y “existe”.

Hay una escuela de matemática llamada formalismo, cuyos partidarios creen que no hay un significado verdadero o inherente a la matemática, sino que la matemática es puramente un lenguaje formal con el cual otras ideas pueden expresarse, y la verdad matemática puede alcanzarse solo jugando de acuerdo a las reglas del juego. Frege no era un formalista y no estaba interesado en aplicar su sistema a las preguntas relacionadas con una agenda formalista. Irónicamente, su trabajo fue bastante adecuado como base para la lógica formal.

El trabajo de Frege Grundlagen der Arithmetik (Fundamentos de la aritmética) (1884) define la noción de número y se basa en el lenguaje introducido en Begriffschrift. Aquí hace una crítica a las teorías de números anteriores, señalando sus insuficiencias; él argumenta que la igualdad de número es un componente esencial de la noción de número. Grundgesetze incorpora y refina su trabajo anterior, incluidas las mejoras basadas en varios artículos. Muchas de estas ideas tuvieron una gran influencia en la discusión filosófica subsiguiente, en particular influyendo en la filosofía de Wittgenstein.

Después de 1903, la potencia del pensamiento de Frege estaba en declive; parecía incapaz de mantenerse al día con una cultura matemática cada vez más moderna y extraña. En este último período, gastó su energía reaccionando contra varios nuevos desarrollos en matemática, y especialmente entró en conflicto con David Hilbert y su programa para la axiomatización de la matemática. En 1917 Frege se retiró, y después de esto produjo Logische Untersuchungen (Investigaciones lógicas) como una extensión del trabajo anterior. Murió en Bad Kleinen, Alemania, el 26 de julio de 1925.

Frege es principalmente recordado por su trabajo en lógica matemática, que condujo a la teoría moderna de la demostración. Otros grandes lógicos como Russell y Gödel continuaron su trabajo. Aunque el esfuerzo de Frege para construir una teoría de números completa y consistente estaba condenado al fracaso, las ideas que formuló en el curso de su investigación influyeron mucho en las generaciones posteriores de matemáticos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Uno de los temas más controvertidos de la matemática del siglo XX fue la base lógica de la disciplina; específicamente, ciertos matemáticos estaban trabajando para demostrar que la formulación axiomática de la matemática era consistente (que cualquier proposición podría ser verdadera o falsa, pero no ambas). Brouwer representó una oposición a esta agenda, presentando su matemática intuicionista como una alternativa deseable.  

Luitzen Brouwer nació el 27 de febrero de 1881, en la ciudad de Overschie en los Países Bajos. Era intelectualmente precoz, completando su educación secundaria a la edad de 14 años; en 1897 ingresó en la Universidad de Ámsterdam, donde estudió matemática durante los siguientes siete años. Brouwer dominó rápidamente la matemática contemporánea, y obtuvo nuevos resultados con respecto a los movimientos continuos en variedades. 

Los intereses de Brouwer eran diversos. Su actividad matemática incluía topología, mapeos y lógica, así como filosofía mística. Su visión personal de la matemática como una actividad mental libre era constructivista y difería mucho del enfoque formalista defendido por David Hilbert y Bertrand Russell. Brouwer participó en el debate sobre los fundamentos de la matemática; rechazó la idea de que la lógica debería ser el pilar de la matemática; más bien, la lógica era solo una expresión de regularidades y patrones notorios en los sistemas construidos. La extrañeza de este punto de vista se hizo evidente cuando Brouwer atacó la ley del tercero excluido, que establece que o bien una declaración dada o su negación lógica debe ser verdadera (que se utiliza en el método “prueba por contradicción”). 

La tesis doctoral de Brouwer de 1907, On the Foundations of Mathematics, expresa sus opiniones. De estas ideas nació la “matemática intuicionista”, que pone énfasis en la capacidad de construir objetos matemáticos. Rechazó la ley del tercero excluido en su sistema y criticó el intento de Hilbert de probar la coherencia de la aritmética. 

En los cinco años desde 1907 hasta 1912, Brouwer descubrió varios valiosos resultados. Estudió el quinto problema de Hilbert, la teoría de grupos continuos, y en el proceso descubrió el teorema de la traslación plano y el “teorema de la bola peluda“. 

Brouwer también estudió varios mapeos topológicos, desarrollando la técnica de usar las llamadas “simplices” para aproximar mapeos continuos. El grado asociado condujo a la noción de clase de homotopía, que permitió la clasificación topológica de muchas variedades. Como resultado, la noción de dimensión (en el sentido topológico) se asentó en una posición más rigurosa.  

En 1912 fue nombrado profesor de matemática en la Universidad de Ámsterdam, y pronto reanudó su investigación sobre los fundamentos de la matemáticas En 1918 publicó una teoría de conjuntos diferente, que no se basaba en la ley del tercero excluido, seguida de nociones similares de medida y función en los años siguientes. Como era de esperar, los teoremas que obtuvo son algo diferentes (por ejemplo, las funciones reales son siempre uniformemente continuas). Por estas razones, sus resultados no fueron totalmente aceptados, y muchos matemáticos simplemente han ignorado su punto de vista. La prueba por contradicción es un método de demostración muy poderoso y comúnmente utilizado; los matemáticos no están dispuestos a renunciar a los muchos teoremas que pueden establecer abrazando el sistema potencialmente más riguroso de Brouwer. 

A partir de 1923, Brouwer se centró en su agenda intuicionista, intentando persuadir a los matemáticos para que rechazaran la ley del tercero excluido. A fines de la década de 1920, los lógicos comenzaron a investigar la conexión de la lógica de Brouwer con la lógica clásica; después de que los teoremas de incompletitud de Kurt Gödel aniquilaran el programa de David Hilbert, más personas se interesaron en el enfoque intuicionista de la matemática. 

Brouwer ganó el reconocimiento internacional de varias sociedades y academias. Murió en Blaricum, Países Bajos, el 2 de diciembre de 1966. Aunque sus esfuerzos por persuadir a los matemáticos de su propio punto de vista no tuvieron éxito (nuevamente, esto se debió en parte a la renuencia a abandonar la poderosa herramienta de la prueba por contradicción, y también porque el marco intuicionista está enraizado en la filosofía mística), Brouwer concientizó sobre las limitaciones de cualquier sistema matemático y predijo correctamente la desaparición de cualquier intento de establecer la consistencia y la integridad de un sistema axiomático. Es un personaje importante en la historia de la lógica matemática, que representa el contramovimiento antirracionalista de la mística que surgió en el siglo XX.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »