Feeds:
Entradas
Comentarios

Posts Tagged ‘Carl Friedrich Gauss’

Uno de los problemas pendientes de la geometría griega era la demostración del quinto postulado de los Elementos de Euclides (a menudo referido como el postulado de las paralelas) a partir de los otros axiomas más intuitivos. Era equivalente a la afirmación de que a través de cualquier punto separado de una línea dada, uno podía construir una línea paralela única; a partir de esta afirmación, se puede deducir que la suma de los ángulos de cualquier triángulo es igual a dos ángulos rectos. Muchos intentos a lo largo de los siglos para establecer rigurosamente este axioma habían fracasado, con el último y más notable intento de Farkas Bolyai. Su hijo, János Bolyai, finalmente construiría una geometría nueva y consistente, e independiente del quinto axioma. A pesar de que la prioridad de este descubrimiento se atribuye a Carl Friedrich Gauss, János Bolyai realizó su investigación ignorando esto y, a menudo, se lo acredita como cofundador de la geometría no euclidiana. 

János Bolyai nació el 15 de diciembre de 1802 en Kolozsvár, Hungría, hijo de Farkas Bolyai y Susanna von Árkos. La familia Bolyai descendía de una larga línea de aristócratas, y Farkas Bolyai había cultivado sus propiedades antes de convertirse en profesor de matemáticas, física y química en el Colegio Evangélico Reformado de Marosvásárhely. Farkas también era amigo cercano de Carl Friedrich Gauss. János Bolyai demostró un gran talento en muchas áreas, incluidas la matemática y la música, demostrando dominio del violín a una edad temprana. En 1815 comenzó a estudiar en la universidad de su padre, y en 1818 ingresó en la academia imperial de Viena en preparación para una carrera militar, contrariamente al deseo de Farkas de que estudiara en Göttingen bajo el ala de Gauss. 

El joven Bolyai se graduó en 1822, pero mientras tanto su interés en la geometría, especialmente el postulado de las paralelas, había sido despertado por la propia obsesión de su padre. De hecho, Farkas Bolyai había pasado muchos años intentando la deducción del quinto axioma, sin éxito; su correspondencia con Gauss sobre este tema condujo a su propio descubrimiento de la geometría no euclidiana, que su vergonzante conservadurismo nunca reveló. Farkas Bolyai incluso advirtió a su hijo enfáticamente en contra de involucrar su intelecto con ese problema en 1820, deseando ahorrarle muchos momentos de angustia, confusión y desesperación. Sin embargo, su impetuosa juventud continuó contemplando la pregunta. 

Después de varios años de vano trabajo, Bolyai se volcó en 1823 hacia la construcción de una geometría que no requiriera el quinto postulado, una geometría que de hecho prescindiera de ese axioma. Mientras tanto, se graduó de la academia y comenzó su primera gira en Rumania como subteniente. Más tarde visitó a su padre en 1825, presentando en su manuscrito su teoría del espacio absoluto, un espacio donde a través de un punto dado no perteneciente a una línea, muchas líneas distintas a través de él podrían construirse paralelas a la línea dada, en refutación directa del postulado de las paralelas. Farkas Bolyai no pudo aceptar esta nueva geometría, pero envió el manuscrito a Gauss. Este último respondió en 1832, asombrado de que János Bolyai hubiera replicado independientemente su propio trabajo, y reclamando su prioridad por más de tres décadas. Gauss dirigió a János Bolyai para explorar varias preguntas, como el volumen del tetraedro en el espacio absoluto, pero el joven húngaro no se sintió alentado. La afirmación de la prioridad de Gauss fue recibida en principio con aprensión, y luego con resentimiento.  

Mientras tanto, Bolyai terminó su carrera militar en Lvov en 1832; a menudo estaba enfermo con fiebre, por lo que el ejército le dio una pensión y lo destituyó del servicio. Aparentemente, se había ganado una reputación como un apuesto oficial con una predilección por los duelos. Regresó a su casa para vivir con su padre, y su manuscrito fue publicado como “Apéndice” en el Tentamen de Farkas en 1832, un tratamiento sistemático de geometría, álgebra y análisis. Sin embargo, este ensayo (así como el libro) no recibió respuesta de los matemáticos, y su desánimo sobre la situación con Gauss condujo a Bolyai a una reclusión tanto social como matemática.  

La relación entre padre e hijo también se tensó, principalmente debido a la irritación por la recepción poco entusiasta de su trabajo. János Bolyai se retiró a la pequeña propiedad familiar en Domáld, y en 1834 se casó con Rosalie von Orbán, con quien tuvo tres hijos. En 1837, ambos Bolyai´s intentaron recuperar su reputación matemática mediante la participación en una competencia de la Sociedad Jablonow. El tema versaba acerca de la construcción geométrica rigurosa de números imaginarios, que fue un tema de interés para muchos matemáticos, como Gauss, Sir William Rowan Hamilton y Augustin-Louis Cauchy. La solución de János Bolyai se parecía a la de Hamilton, pero no logró el reconocimiento deseado, lo que solo exacerbó sus tendencias melancólicas. Continuó investigando en matemática esporádicamente, con calidad variable; sus mejores resultados se refieren a la geometría absoluta, la relación entre la trigonometría absoluta y la trigonometría esférica, y el volumen del tetraedro en el espacio absoluto. Un trabajo de Nicolai Ivanovich Lobachevsky sobre el mismo tipo de geometría lo alcanzó en 1848, y actuó como un impulso para avanzar en sus esfuerzos. En sus últimos trabajos, Bolyai se preocupó más por la consistencia del espacio absoluto, y si podían surgir de su construcción contradicciones lógicas; esto no se resolverá hasta más tarde en el siglo XIX.  

Continuó trabajando hasta 1856, el año en que murió su padre, y su matrimonio con Rosalie se disolvió al mismo tiempo, aumentando su aislamiento. Bolyai también trabajó en una teoría de la salvación, haciendo hincapié en el vínculo entre la felicidad individual y universal. Murió el 27 de enero de 1860, después de una prolongada enfermedad.  

Bolyai hizo una contribución solitaria a la matemática que fue tan sobresaliente en su creatividad e importancia como para merecerle algo de fama, a pesar de su condición de inconformista. Junto con Gauss y Lobachevsky, Bolyai es considerado cofundador de la geometría no euclidiana. Estas inusuales geometrías, inicialmente despreciadas como feas e inútiles, han encontrado aceptación en el siglo XX debido a su gran relevancia para el espacio curvo de nuestro propio universo.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

El campo de la astronomía se había desarrollado rápidamente en el siglo XIX, y la matemática conservaba su importancia vital para esta ciencia hermana. Friedrich Bessel no sólo se convirtió en uno de los más grandes astrónomos, calculando con precisión varias distancias astronómicas y siendo calificado como el fundador de la escuela alemana de astronomía práctica, sino que también desarrolló teorías matemáticas sobresalientes para explicar las perturbaciones de las órbitas planetarias. 

El 22 de julio de 1784, Friedrich Bessel nació en Minden, Alemania. Su padre era un funcionario público de esa ciudad, y su madre era hija de un ministro. Bessel tenía una familia grande, conformada por seis hermanas y dos hermanos. Bessel asistió al Gymnasium (instituto alemán) en Minden, pero después de cuatro años lo abandonó para convertirse en aprendiz de comerciante. Mientras estaba en la escuela, tuvo una inclinación hacia la matemática y la física, pero no mostró ningún grado digno de ser  destacado hasta que alcanzó los 15 años de edad. En 1799 comenzó su aprendizaje con Kulenkamp, una firma famosa mercantilista; rápidamente demostró su facilidad con los cálculos y la contabilidad, y como resultado se le proporcionó un sueldo escaso, que permitió que se emancipara de la dependencia de sus padres.

Mientras tanto, Bessel pasaba las noches estudiando varios temas como preparación para su futura carrera como oficial de carga. Pronto dominó la geografía, el español y el inglés, así como el arte de la navegación; esta disciplina despertó por primera vez su fascinación por la astronomía. No contento simplemente con conocer la tecnología de su comercio, Bessel comenzó a investigar los aspectos más profundos de la astronomía y la matemática, considerando que este conocimiento fundamental era esencial. Entre sus primeros logros en el campo de la astronomía encontramos la determinación de la longitud de Bremen, utilizando un sextante que había construido. Él también comenzó a leer literatura astronómica, y de esta manera descubrió las observaciones de 1607 del astrónomo Thomas Harriot del cometa Halley. Después de completar la reducción de las observaciones de Harriot (un proceso que implica compensar la refracción de la luz causada por la atmósfera terrestre y generalmente liberar las observaciones de errores), se la presentó al astrónomo Heinrich Olbers con su propio cálculo de la órbita en 1804. El resultado estaba en estrecho acuerdo con el trabajo de Halley, y Olbers alentó a Bessel a complementar estas reducciones con algunas observaciones adicionales; el fruto de este trabajo fue un artículo impreso en el Monatliche Correspondenz. Con la profundidad digna de un material de tesis doctoral, este artículo atrajo la atención de muchos lectores y marcó una transición en la vida de Bessel.

A principios de 1806, antes de terminar su aprendizaje, Bessel se convirtió en asistente en un observatorio privado cerca de Bremen, que era propiedad de un rico funcionario con interés en la astronomía que tenía contactos con muchos científicos. En el observatorio Bessel adquirió una escolarización completa en la observación de planetas y cometas, y mientras tanto hizo otras contribuciones al cálculo de órbitas de cometas. En 1807 comenzó la reducción de observaciones de James Bradley para 3.222 estrellas, lo que marcó uno de los logros más grandes de Bessel. Friedrich Wilhelm III de Prusia construyó un nuevo observatorio en Königsberg y Bessel fue nombrado director y profesor de astronomía en 1809. Dado que no tenía doctorado, la Universidad de Göttingen le dio uno por sugerencia de Carl Friedrich Gauss, quien había conocido a Bessel en 1807.

Durante la construcción del observatorio, Bessel continuó su trabajo en la reducción de los datos de Bradley; por sus tablas de refracción resultantes, fue galardonado con el Premio Lalande en 1811 por el Institut de France. En 1813 comenzó sus observaciones en el observatorio ya terminado, y permaneció en Königsberg como profesor e investigador por el resto de su vida. En 1812 se casó con Johanna Hagen, con quien tuvo dos hijos y tres hijas. Este afortunado matrimonio fue ensombrecido por la enfermedad y las muertes tempranas de sus hijos, y Bessel encontró distracción en caminar y cazar.

Bessel logró mucho en el campo de la astronomía. La reducción de los datos de Bradley permitió una correcta determinación de las posiciones y movimientos de las estrellas, pero el propio programa de observación y reducción inmediata de Bessel dio como resultado datos altamente precisos. También dio la primera estimación precisa de la distancia a una estrella fija, utilizando técnicas de triangulación y un heliómetro. También participó en la geodesia, la medición de la Tierra, completando una triangulación de Prussia del Este en 1830 con un nuevo aparato de medición y el método de mínimos cuadrados de Gauss. La estimación resultante de Bessel de los parámetros de las dimensiones de la Tierra le valió fama internacional.

Bessel estaba interesado en la matemática a través de su estrecha conexión con la astronomía. El problema de la perturbación en la astronomía era susceptible de análisis utilizando ciertas funciones hipergeométricas confluentes especiales, más tarde llamadas funciones de Bessel. Hubo dos efectos de un planeta intruso en la órbita elíptica de un planeta dado: el efecto directo de la perturbación gravitacional y el efecto indirecto que surge del movimiento del sol causado por el planeta perturbador. Bessel separó las dos influencias, y las funciones de Bessel aparecen como coeficientes en el desarrollo en serie del efecto indirecto. En su estudio del problema, Bessel hizo un estudio intensivo de estas funciones especiales que se describen en su tratado de Berlín de 1824. Casos especiales de estas funciones se conocían desde hacía más de un siglo, descubiertos por Johann Bernoulli y Gottfried Leibniz; Daniel Bernoulli (1732) y Leonhard Euler (1744) también habían investigado los coeficientes de Bessel. Pero la motivación de Bessel surgió de su aplicación a la astronomía, no como un estudio separado en matemática pura.

Su salud fue en declive a partir de 1840, y su último viaje importante a Inglaterra fue en 1842; como resultado de su participación en el Congreso de la Asociación Británica en Manchester, Bessel se animó a completar y publicar algunas investigaciones restantes. Después de dos años agonizantes luchando contra el cáncer, murió el 17 de marzo de 1846, en Königsberg.

Aunque Bessel es conocido principalmente como astrónomo, al igual que Gauss, hizo contribuciones sobresalientes a la matemática pura que podrían aplicarse a la astronomía. Su nombre está ligado a las funciones especiales mencionadas anteriormente, así como a una desigualdad que se utiliza hoy en el análisis de Fourier y la teoría de los espacios de Hilbert. Tanto las funciones de Bessel como la desigualdad de Bessel tienen una relevancia perdurable para los matemáticos modernos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

De los matemáticos de la antigüedad griega, Arquímedes debe ser considerado el más grande. Sus contribuciones a la geometría y a la mecánica, así como a la hidrostática, lo colocan en un pedestal más alto que sus contemporáneos. Y como sus obras fueron gradualmente traducidas e introducidas en Occidente, ejerció una influencia tan grande allí como su pensamiento ya lo había hecho en Bizancio y Arabia. En su método de agotamiento puede verse un predecesor clásico del cálculo integral, que sería desarrollado formalmente por Blaise Pascal, Gottfried Leibniz, Sir Isaac Newton y otros en el siglo XVII. Sólo su historia de vida ha inspirado a muchos matemáticos.

Como con muchas personas antiguas, los detalles exactos de la vida de Arquímedes son difíciles de determinar, ya que hay varios relatos de calidad variable. Su padre era el astrónomo Fidias, y es posible que Arquímedes fuera pariente del tirano de Siracusa, el rey Hierón II. Ciertamente él era íntimo del rey, pues su trabajo El Contador de Arena fue dedicado a Gelón, hijo de Hierón. Nacido en Siracusa, Arquímedes partió a Alejandría para seguir una educación matemática; allí estudió con Euclides de Alejandría y asistió al desarrollo de la matemática euclidiana. Pero fue en Siracusa, a donde pronto volvió, donde hizo la mayor parte de sus descubrimientos.

Aunque famoso por sus contribuciones a la matemática, Arquímedes también diseñó numerosas invenciones mecánicas. El caracol de agua, inventado en Egipto para ayudar al riego, era un artefacto tipo tornillo usado para levantar agua. Más impresionantes son las historias relacionadas con su construcción y aplicación de la polea compuesta: Hierón había solicitado a Arquímedes que demostrara cómo una pequeña fuerza podía mover un gran peso. El matemático ató una cuerda a un gran buque mercante que estaba cargado de carga y pasajeros, y pasó la cuerda por un sistema de poleas. De esta manera, sentado a cierta distancia del buque, Arquímedes pudo arrastrar sin esfuerzo el barco a la orilla del puerto.

Arquímedes también descubrió la utilidad de la palanca, al observar que cuanto más larga es la distancia desde el fulcro, más peso podía mover la palanca. Extendiendo lógicamente este principio, afirmó que era factible mover el mundo dada una palanca suficientemente larga. Otra historia popular relata que Hierón le dio a Arquímedes la tarea de averiguar si una cierta corona estaba hecha de oro puro, o si se había adulterado fraudulentamente con plata. Cuando Arquímedes reflexionó sobre este rompecabezas se encontraba en pleno baño y notó que la cantidad de agua desplazada era igual a la cantidad de su cuerpo que estaba sumergida. Esto inmediatamente le disparó un método para resolver el problema de Hierón, y saltó de la bañera con alegría, corriendo desnudo hacia su casa, gritando “Eureka”. 

Su habilidad en objetos mecánicos fue inigualable, y Hierón aprovechó a menudo esto para mejorar las defensas de la ciudad, insistiendo en que el intelecto de Arquímedes debía ser puesto al servicio de alguna aplicación práctica. Cuando Marcelo y los romanos llegaron a atacar Siracusa, encontraron la ciudad inexpugnable debido a la multiplicidad de catapultas, brazos mecánicos, espejos ardientes y varios dispositivos balísticos que Arquímedes había construido. Arquímedes escribió un libro titulado On Spheremaking en el que describe cómo construir un modelo planetario diseñado para simular el movimiento del Sol, la Luna y los planetas. Parece que Arquímedes estaba familiarizado con el heliocentrismo de Arquitas, y lo utilizó en su planetario.

Según Plutarco, Arquímedes se dedicó a la teoría pura y desdeñaba las aplicaciones prácticas de la matemática a la ingeniería; sólo aquellos sujetos libres de cualquier utilidad para la sociedad eran considerados dignos de perseguir de todo corazón. Las obras matemáticas de Arquímedes consisten principalmente en estudios de área y volumen, y el análisis geométrico de la estática y la hidrostática. Al calcular el área o el volumen de varias figuras planas y sólidas, utiliza el llamado Lema de Arquímedes y el “método de agotamiento”. Este lema afirma que la diferencia de dos magnitudes desiguales puede ser formada en una proporción con cualquier magnitud semejante; así, la diferencia de dos líneas será siempre una línea y no un punto. El método de agotamiento consiste en sustraer indefinidamente una cantidad mayor que la mitad de una magnitud dada, y apunta a la idea de la eterna divisibilidad del continuo (que siempre se puede quitar la mitad de un número y todavía queda algo). Estas ideas se limitan a las nociones de lo infinitesimal -lo infinitamente pequeño- y a la idea de límite, que son ingredientes clave del cálculo integral; sin embargo, los griegos eran adversos a la noción de infinito e infinitesimales, y Arquímedes se apartaba de hacer cualquier cosa que él sentía sería considerado como absurdo.

El método de agotamiento, que se usó raramente en los Elementos de Euclides, se ilustrará a través del siguiente ejemplo: En Sobre la medida de un círculo, Arquímedes asume, en aras de la contradicción, que el área de un triángulo rectángulo con base igual a la circunferencia y altura igual al radio del círculo es realmente mayor que el área del círculo. Entonces él puede, usando el lema de Arquímedes, inscribir un polígono en el círculo, con la misma área que el triángulo; esta contradicción muestra que el área del triángulo no puede ser mayor que el círculo, y hace un argumento similar de que no puede ser menor.

El concepto básico del método de aproximación, que es similar al método de agotamiento, consiste en inscribir figuras regulares dentro de una figura plana y sólida tal que el área o el volumen restante se reduce constantemente; el área o el volumen de las figuras regulares se pueden calcular fácilmente, y ésta será una aproximación cada vez más exacta. El área o volumen restante está “agotado”. Por supuesto, la manera moderna de obtener una determinación exacta de la medida es a través del límite; Arquímedes evitó esta cuestión al demostrar que el área o el volumen restante podría hacerse tan pequeño como se deseara inscribiendo figuras más regulares. Por supuesto, uno podría realizar el mismo procedimiento circunscribiendo figuras regulares.

También aplicó estos métodos a los sólidos, calculando la superficie y el volumen de la esfera, y el volumen de conos y pirámides. Los métodos de Arquímedes eran a veces puramente geométricos, pero a veces usaban principios de estática, como un “método de equilibrio”. Su conocimiento de la ley de la palanca y el centro de gravedad del triángulo, junto con sus métodos de aproximación y agotamiento le permitieron mejorar demostraciones de teoremas conocidos, así como establecer resultados completamente nuevos.

Arquímedes también hizo algunas contribuciones en el ámbito del  cálculo numérico, produciendo algunas aproximaciones muy precisas para el número pi y para la raíz cuadrada de tres. En El contador de Arena crea una notación para números muy grandes y estima el número de granos de arena para llenar el universo. En Sobre el equilibrio de los planos prueba la ley de la palanca a partir de principios geométricos, y en Sobre los cuerpos flotantes  explica el concepto de presión hidrostática. El llamado Principio de Arquímedes establece que sólidos colocados en un fluido serán más ligeros en el fluido en una cantidad igual al peso del fluido desplazado.

Su influencia en la matemática posterior fue extensa, aunque Arquímedes pudo no haber gozado de mucha fama en su propia vida. Griegos posteriores, entre ellos Pappus de Alejandría y Teón de Alejandría, escribieron comentarios sobre sus escritos, y más tarde los autores bizantinos estudiaron su obra. Desde Bizancio sus textos llegaron a Occidente antes del comienzo del Renacimiento; mientras tanto, los matemáticos árabes conocían a Arquímedes y explotaron sus métodos en sus propias investigaciones sobre  secciones cónicas. En el siglo XII aparecieron traducciones del árabe al latín, de las que Leonardo de Pisa (Fibonacci) hizo uso en el siglo XIII. En los años 1400, el conocimiento de Arquímedes se había expandido por partes de Europa, y su matemática influyó más tarde en Simon Stevin, Johannes Kepler, Galileo Galilei y Bonaventura Cavalieri.

Tal vez la historia más conocida acerca de Arquímedes es la que relata su muerte, que se produjo en el año 212 a.C. durante el asedio de Siracusa por los romanos. Al parecer, no estaba preocupado por la situación cívica, y estaba ocupado haciendo diagramas en la arena de su casa (en ese momento tenía al menos 75 años de edad). Aunque el general romano Marcelo había dado órdenes estrictas para que el famoso matemático siciliano no fuera perjudicado, un soldado romano irrumpió en la casa de Arquímedes y arruinó su diagrama. Cuando el anciano matemático expresó verbalmente su disgusto, el soldado lo mató rápidamente.

Arquímedes fue un destacado matemático y científico. De hecho, es considerado por muchos como uno de los tres mejores matemáticos de todos los tiempos, junto con Carl Friedrich Gauss y Newton. Una vez descubierto por los europeos medievales, sus obras propulsaron el descubrimiento del cálculo. Es interesante que este profundo intelecto fuera remoto en tiempo y espacio al de los grandes matemáticos griegos clásicos; Arquímedes trabajó en la isla de Siracusa, lejos de Atenas, fuente de mucho pensamiento griego, y trabajó siglos después del declive de la cultura griega.

 

Para ampliar…

 

Y… para los más chicos…

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »