Feeds:
Entradas
Comentarios

Posts Tagged ‘Carl Friedrich Gauss’

De los matemáticos de la antigüedad griega, Arquímedes debe ser considerado el más grande. Sus contribuciones a la geometría y a la mecánica, así como a la hidrostática, lo colocan en un pedestal más alto que sus contemporáneos. Y como sus obras fueron gradualmente traducidas e introducidas en Occidente, ejerció una influencia tan grande allí como su pensamiento ya lo había hecho en Bizancio y Arabia. En su método de agotamiento puede verse un predecesor clásico del cálculo integral, que sería desarrollado formalmente por Blaise Pascal, Gottfried Leibniz, Sir Isaac Newton y otros en el siglo XVII. Sólo su historia de vida ha inspirado a muchos matemáticos.

Como con muchas personas antiguas, los detalles exactos de la vida de Arquímedes son difíciles de determinar, ya que hay varios relatos de calidad variable. Su padre era el astrónomo Fidias, y es posible que Arquímedes fuera pariente del tirano de Siracusa, el rey Hierón II. Ciertamente él era íntimo del rey, pues su trabajo El Contador de Arena fue dedicado a Gelón, hijo de Hierón. Nacido en Siracusa, Arquímedes partió a Alejandría para seguir una educación matemática; allí estudió con Euclides de Alejandría y asistió al desarrollo de la matemática euclidiana. Pero fue en Siracusa, a donde pronto volvió, donde hizo la mayor parte de sus descubrimientos.

Aunque famoso por sus contribuciones a la matemática, Arquímedes también diseñó numerosas invenciones mecánicas. El caracol de agua, inventado en Egipto para ayudar al riego, era un artefacto tipo tornillo usado para levantar agua. Más impresionantes son las historias relacionadas con su construcción y aplicación de la polea compuesta: Hierón había solicitado a Arquímedes que demostrara cómo una pequeña fuerza podía mover un gran peso. El matemático ató una cuerda a un gran buque mercante que estaba cargado de carga y pasajeros, y pasó la cuerda por un sistema de poleas. De esta manera, sentado a cierta distancia del buque, Arquímedes pudo arrastrar sin esfuerzo el barco a la orilla del puerto.

Arquímedes también descubrió la utilidad de la palanca, al observar que cuanto más larga es la distancia desde el fulcro, más peso podía mover la palanca. Extendiendo lógicamente este principio, afirmó que era factible mover el mundo dada una palanca suficientemente larga. Otra historia popular relata que Hierón le dio a Arquímedes la tarea de averiguar si una cierta corona estaba hecha de oro puro, o si se había adulterado fraudulentamente con plata. Cuando Arquímedes reflexionó sobre este rompecabezas se encontraba en pleno baño y notó que la cantidad de agua desplazada era igual a la cantidad de su cuerpo que estaba sumergida. Esto inmediatamente le disparó un método para resolver el problema de Hierón, y saltó de la bañera con alegría, corriendo desnudo hacia su casa, gritando “Eureka”. 

Su habilidad en objetos mecánicos fue inigualable, y Hierón aprovechó a menudo esto para mejorar las defensas de la ciudad, insistiendo en que el intelecto de Arquímedes debía ser puesto al servicio de alguna aplicación práctica. Cuando Marcelo y los romanos llegaron a atacar Siracusa, encontraron la ciudad inexpugnable debido a la multiplicidad de catapultas, brazos mecánicos, espejos ardientes y varios dispositivos balísticos que Arquímedes había construido. Arquímedes escribió un libro titulado On Spheremaking en el que describe cómo construir un modelo planetario diseñado para simular el movimiento del Sol, la Luna y los planetas. Parece que Arquímedes estaba familiarizado con el heliocentrismo de Arquitas, y lo utilizó en su planetario.

Según Plutarco, Arquímedes se dedicó a la teoría pura y desdeñaba las aplicaciones prácticas de la matemática a la ingeniería; sólo aquellos sujetos libres de cualquier utilidad para la sociedad eran considerados dignos de perseguir de todo corazón. Las obras matemáticas de Arquímedes consisten principalmente en estudios de área y volumen, y el análisis geométrico de la estática y la hidrostática. Al calcular el área o el volumen de varias figuras planas y sólidas, utiliza el llamado Lema de Arquímedes y el “método de agotamiento”. Este lema afirma que la diferencia de dos magnitudes desiguales puede ser formada en una proporción con cualquier magnitud semejante; así, la diferencia de dos líneas será siempre una línea y no un punto. El método de agotamiento consiste en sustraer indefinidamente una cantidad mayor que la mitad de una magnitud dada, y apunta a la idea de la eterna divisibilidad del continuo (que siempre se puede quitar la mitad de un número y todavía queda algo). Estas ideas se limitan a las nociones de lo infinitesimal -lo infinitamente pequeño- y a la idea de límite, que son ingredientes clave del cálculo integral; sin embargo, los griegos eran adversos a la noción de infinito e infinitesimales, y Arquímedes se apartaba de hacer cualquier cosa que él sentía sería considerado como absurdo.

El método de agotamiento, que se usó raramente en los Elementos de Euclides, se ilustrará a través del siguiente ejemplo: En Sobre la medida de un círculo, Arquímedes asume, en aras de la contradicción, que el área de un triángulo rectángulo con base igual a la circunferencia y altura igual al radio del círculo es realmente mayor que el área del círculo. Entonces él puede, usando el lema de Arquímedes, inscribir un polígono en el círculo, con la misma área que el triángulo; esta contradicción muestra que el área del triángulo no puede ser mayor que el círculo, y hace un argumento similar de que no puede ser menor.

El concepto básico del método de aproximación, que es similar al método de agotamiento, consiste en inscribir figuras regulares dentro de una figura plana y sólida tal que el área o el volumen restante se reduce constantemente; el área o el volumen de las figuras regulares se pueden calcular fácilmente, y ésta será una aproximación cada vez más exacta. El área o volumen restante está “agotado”. Por supuesto, la manera moderna de obtener una determinación exacta de la medida es a través del límite; Arquímedes evitó esta cuestión al demostrar que el área o el volumen restante podría hacerse tan pequeño como se deseara inscribiendo figuras más regulares. Por supuesto, uno podría realizar el mismo procedimiento circunscribiendo figuras regulares.

También aplicó estos métodos a los sólidos, calculando la superficie y el volumen de la esfera, y el volumen de conos y pirámides. Los métodos de Arquímedes eran a veces puramente geométricos, pero a veces usaban principios de estática, como un “método de equilibrio”. Su conocimiento de la ley de la palanca y el centro de gravedad del triángulo, junto con sus métodos de aproximación y agotamiento le permitieron mejorar demostraciones de teoremas conocidos, así como establecer resultados completamente nuevos.

Arquímedes también hizo algunas contribuciones en el ámbito del  cálculo numérico, produciendo algunas aproximaciones muy precisas para el número pi y para la raíz cuadrada de tres. En El contador de Arena crea una notación para números muy grandes y estima el número de granos de arena para llenar el universo. En Sobre el equilibrio de los planos prueba la ley de la palanca a partir de principios geométricos, y en Sobre los cuerpos flotantes  explica el concepto de presión hidrostática. El llamado Principio de Arquímedes establece que sólidos colocados en un fluido serán más ligeros en el fluido en una cantidad igual al peso del fluido desplazado.

Su influencia en la matemática posterior fue extensa, aunque Arquímedes pudo no haber gozado de mucha fama en su propia vida. Griegos posteriores, entre ellos Pappus de Alejandría y Teón de Alejandría, escribieron comentarios sobre sus escritos, y más tarde los autores bizantinos estudiaron su obra. Desde Bizancio sus textos llegaron a Occidente antes del comienzo del Renacimiento; mientras tanto, los matemáticos árabes conocían a Arquímedes y explotaron sus métodos en sus propias investigaciones sobre  secciones cónicas. En el siglo XII aparecieron traducciones del árabe al latín, de las que Leonardo de Pisa (Fibonacci) hizo uso en el siglo XIII. En los años 1400, el conocimiento de Arquímedes se había expandido por partes de Europa, y su matemática influyó más tarde en Simon Stevin, Johannes Kepler, Galileo Galilei y Bonaventura Cavalieri.

Tal vez la historia más conocida acerca de Arquímedes es la que relata su muerte, que se produjo en el año 212 a.C. durante el asedio de Siracusa por los romanos. Al parecer, no estaba preocupado por la situación cívica, y estaba ocupado haciendo diagramas en la arena de su casa (en ese momento tenía al menos 75 años de edad). Aunque el general romano Marcelo había dado órdenes estrictas para que el famoso matemático siciliano no fuera perjudicado, un soldado romano irrumpió en la casa de Arquímedes y arruinó su diagrama. Cuando el anciano matemático expresó verbalmente su disgusto, el soldado lo mató rápidamente.

Arquímedes fue un destacado matemático y científico. De hecho, es considerado por muchos como uno de los tres mejores matemáticos de todos los tiempos, junto con Carl Friedrich Gauss y Newton. Una vez descubierto por los europeos medievales, sus obras propulsaron el descubrimiento del cálculo. Es interesante que este profundo intelecto fuera remoto en tiempo y espacio al de los grandes matemáticos griegos clásicos; Arquímedes trabajó en la isla de Siracusa, lejos de Atenas, fuente de mucho pensamiento griego, y trabajó siglos después del declive de la cultura griega.

 

Para ampliar…

 

Y… para los más chicos…

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

El matemático noruego Niels Abel hizo contribuciones excepcionales a la teoría de las funciones elípticas, uno de los temas matemáticos más populares del siglo XIX. La lucha, las dificultades y la incertidumbre caracterizaron su vida, pero bajo condiciones difíciles él todavía pudo producir un cuerpo prolífico y brillante de investigación matemática. Tristemente murió joven, sin poder alcanzar la gloria y el reconocimiento por los que había trabajado.

Niels Henrik Abel era hijo de Sören Abel, un pastor Luterano, y Ane Marie Simonson, hija de un rico comerciante. La primera parroquia del pastor Abel estuvo ubicada en la isla de Finnöy, donde Niels Abel nació en 1802. Poco después, el padre de Abel se involucró en política.

Hasta ese momento Abel y sus hermanos habían recibido instrucción por parte de su padre, pero en 1815 fueron enviados a la escuela en Oslo. El rendimiento de Abel en la escuela fue marginal, pero en 1817 la llegada de un nuevo profesor de matemática, Bernt Holmboe, cambió grandemente el destino de Abel. Holmboe reconoció el don de Abel para la matemática, y comenzó a estudiar a Leonhard Euler y a los matemáticos franceses. Pronto Abel había superado a su maestro. En este momento se interesó mucho por la teoría de las ecuaciones algebraicas. Holmboe estaba encantado con su descubrimiento del joven matemático.

Durante su último año en la escuela Abel intentó resolver la ecuación de quinto grado, un problema pendiente de la antigüedad, pero falló (la ecuación no tiene soluciones racionales). Sin embargo, sus esfuerzos le introdujeron en la teoría de las funciones elípticas. Mientras tanto, el padre de Abel cayó en desgracia pública debido al alcoholismo, y después de su muerte en 1820 la familia quedó en circunstancias financieras difíciles.

Abel entró en la Universidad de Suecia en 1821, y se le concedió una habitación libre debido a su extrema pobreza. La facultad incluso lo apoyó con sus propios recursos; él era huésped frecuente de la casa de Christoffer Hansteen, el principal científico de la universidad. En el primer año, Abel había terminado su grado preliminar, lo que le permitió contar con tiempo suficiente para seguir sus propios estudios avanzados. Vorazmente leyó todo lo que pudo encontrar con respecto a la matemática, y publicó sus primeros artículos en el diario de Hansteen después de 1823.

En el verano de 1823 Abel recibió ayuda de la facultad para viajar a Copenhague con el fin de conocer a los matemáticos daneses. El viaje fue inspirador; también conoció allí a su futura prometida, Christine Kemp. Cuando volvió a Oslo, Abel comenzó a trabajar una vez más en la ecuación quíntica, pero esta vez intentó demostrar que no había una expresión radical para su solución. Él tuvo éxito, y publicó su resultado en francés a sus expensas. Por desgracia no tuvo reacción por parte de su audiencia, incluso el mismísimo Carl Friedrich Gauss fue indiferente.

Los problemas financieros de Abel se complicaron por su compromiso con Kemp, pero consiguió un pequeño estipendio para estudiar idiomas con el fin de prepararse para viajar al extranjero. Después de esto, recibiría una modesta beca por dos años para estudios en el extranjero. En 1825 partió con algunos amigos hacia Berlín, y en su camino a través de Copenhague conoció a August Crelle, un influyente ingeniero con un vivo interés por  la matemáticas. Los dos se convirtieron en amigos de por vida, y Crelle acordó comenzar una revista alemana para la publicación de matemática pura. Muchos de los artículos de Abel fueron publicados en los primeros volúmenes, incluyendo una versión ampliada de su trabajo sobre la ecuación de quinto grado.

Uno de los notables artículos de Abel en el Diario de Crelle generalizaba la fórmula binomial, que da una expansión para la enésima potencia de una expresión binomial. Abel volvió su pensamiento hacia las series infinitas, y se preocupó por el hecho de que las sumas nunca habían sido rigurosamente determinadas. El resultado de su investigación fue un trabajo clásico sobre series de potencias, con la determinación de la suma de la serie binomial para exponentes arbitrarios. Mientras tanto, Abel no consiguió un puesto que estaba vacante en la Universidad de Suecia; su ex profesor Holmboe fue seleccionado. Cabe señalar que Abel mantuvo su nobleza de carácter a lo largo de su frustrante vida. 

En la primavera de 1826 Abel viajó a París y presentó un artículo a la Academia Francesa de Ciencias que consideró su obra maestra: trataba la suma de las integrales de una función algebraica dada, y por lo tanto generalizaba la relación de Euler para integrales elípticas. Este trabajo, sobre el cual Abel trabajó durante muchos meses pero nunca fue publicado, fue presentado en octubre de 1826, y Augustin-Louis Cauchy  y Adrien-Marie Legendre fueron nombrados árbitros. Ningún informe fue publicado, y nada fue publicado hasta después de la muerte de Abel. Parece que Cauchy fue el culpable de la tardanza, y al parecer perdió el manuscrito. Abel más tarde reescribió el artículo (y tampoco se publicó este trabajo), y el teorema descrito anteriormente llegó a ser conocido como el teorema de Abel.

Después de esta decepcionante temporada en Francia, Abel regresó a Berlín y cayó enfermo con su primer ataque de tuberculosis. Crelle le ayudó con su enfermedad, y trató de conseguirle un puesto en Berlín, pero Abel anhelaba regresar a Noruega. La nueva investigación de Abel transformó la teoría de las integrales elípticas en la teoría de las funciones elípticas usando sus inversas. A través de esta dualidad, las funciones elípticas se convirtieron en una importante generalización de las funciones trigonométricas. Como estudiante en Oslo, Abel ya había desarrollado gran parte de la teoría, y este artículo presentaba  su pensamiento con gran detalle.

A su regreso a Oslo en 1827, Abel no tenía perspectivas de ocupar una posición allí, y logró sobrevivir impartiendo tutorías. Por unos cuantos meses Hansteen se fue de vacaciones a Siberia y Abel se convirtió en su sustituto en la universidad. Mientras tanto, el trabajo de Abel había comenzado a estimular el interés entre los matemáticos europeos. A principios de 1828 Abel descubrió que tenía un joven competidor alemán, Carl Jacobi, en el campo de las funciones elípticas. Consciente de ello Abel escribió una rápida sucesión de artículos sobre funciones elípticas y preparó un libro de memorias que sería publicado póstumamente. 

Parece que Abel tuvo la prioridad de descubrir a Jacobi en el ámbito de las funciones elípticas; sin embargo, también se sabe que Gauss era consciente de los principios de las funciones elípticas mucho antes de Abel o Jacobi, y había decidido no publicar. En este momento Abel comenzó una correspondencia con Legendre, que también estaba interesado en las funciones elípticas. Los matemáticos de Francia, junto con Crelle, intentaron asegurarle un empleo a Abel, e incluso se lo solicitaron al monarca de Suecia.

La salud de Abel se estaba deteriorando, pero siguió escribiendo frenéticamente. Pasó el verano de 1828 con su prometida, y cuando la visitó en Navidad tuvo un cuadro febril debido a la exposición al frío. Mientras se preparaba para su regreso a Oslo, Abel sufrió una violenta hemorragia que lo obligó a estar en cama. A la edad de 26 años murió de tuberculosis el 26 de abril de 1829; dos días más tarde, Crelle le escribió con júbilo que le había asegurado un puesto en Berlín. En 1830 la Academia Francesa de Ciencias concedió su Gran Premio a Abel y Jacobi por sus brillantes descubrimientos matemáticos.

Abel fue reconocido como uno de los matemáticos más grandes después de su muerte, y realmente logró mucho a pesar de su corta vida. La teoría de las funciones elípticas se expandiría mucho durante el siglo XIX, y la obra de Abel contribuyó significativamente a este desarrollo.

En el año 2002 el gobierno noruego creó el Premio Abel en conmemoración del bicentenario de su nacimiento. La Academia Noruega de Ciencias y Letras es la encargada cada año de designar al merecedor de tal galardón, vía el consenso de un comité conformado por cinco matemáticos de varios países. El  primero en recibir el Premio Abel fue el matemático francés Jean-Pierre Serre (2003), mientras que este año, 2017, el agasajado con este honor fue también un matemático francés, Yves Meyer, por sus contribuciones al conocimiento y desarrollo de la teoría de las ondículas.

 

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Mientras que los antiguos griegos estaban familiarizados con los enteros positivos, los racionales y los reales, el cero (usado como un número real en lugar de denotar un número faltante) y los números negativos fueron utilizados por primera vez en la India -como se sabe- por Brahmagupta en la Siglo VII. Los números complejos fueron introducidos por el matemático y médico Gerolamo Cardano (1501-1576) del Renacimiento italiano, no sólo para resolver ecuaciones como x^{2}+1=0 sino porque eran necesarios para encontrar soluciones reales de ciertas ecuaciones cúbicas con coeficientes reales. Mucho más tarde, el matemático alemán Carl Friedrich Gauss (1777-1855) probó el Teorema Fundamental del Álgebra, que dice que todas las ecuaciones con coeficientes complejos tienen soluciones complejas, eliminando así la principal motivación para introducir nuevos números. Sin embargo, el matemático irlandés Sir William Rowan Hamilton (1805-1865) y el matemático francés Olinde Rodrigues (1794-1851) inventaron los cuaterniones a mediados del siglo XIX, aunque estos resultaron ser menos populares en la comunidad científica hasta hace poco tiempo.

Gerolamo Cardano

Carl Friedrich Gauss

Sir William Rowan Hamilton

Olinde Rodrigues

En la actualidad, una presentación lógica del sistema numérico, tal como se enseña en el nivel universitario, sería la siguiente:

\mathbb{N}\rightarrow\mathbb{Z}\rightarrow\mathbb{Q}\rightarrow\mathbb{R}\rightarrow\mathbb{C}\rightarrow\mathbb{H}.

Aquí las letras, introducidas por Nicolas Bourbaki, se refieren a los números naturales, los números enteros , los números racionales, los números reales, los números complejos y los cuaterniones, respectivamente, y las flechas indican la inclusión de cada sistema numérico en el siguiente. Sin embargo, como se ha mostrado, el desarrollo histórico procede de forma diferente:

\mathbb{N}^{+}\rightarrow\mathbb{Q}^{+}\rightarrow\mathbb{R}^{+}\rightarrow\mathbb{R}\rightarrow\mathbb{C}\rightarrow\mathbb{H}

donde el signo más indica la restricción a elementos positivos. Este es el desarrollo hasta \mathbb{R} al que a menudo se adhiere en la escuela secundaria.

Read Full Post »

Older Posts »