Feeds:
Entradas
Comentarios

Posts Tagged ‘Carl Jacobi’

Karl Weierstrass ha sido descrito como el padre del análisis moderno. De hecho, sus rigurosos estándares de rigor se han incorporado a la disciplina moderna del análisis, y muchos de los métodos y temas se deben a él. Weierstrass también hizo contribuciones fundamentales al análisis complejo y la teoría de las funciones elípticas.

Karl Theodor Wilhelm Weierstrass nació el 31 de octubre de 1815 en Ostenfelde, Alemania. Su padre, Wilhelm Weierstrass, era un funcionario público altamente educado. La madre de Weierstrass se llamaba Theodora Vonderforst, y Weierstrass era el mayor de cuatro hijos. Cuando Weierstrass tenía ocho años su padre se convirtió en inspector de impuestos, lo que implicaba una constante reubicación. En 1827 murió su madre.

La familia se estableció en 1829 cuando el padre de Weierstrass consiguió un puesto más permanente en Paderborn, y Weierstrass asistió a la escuela secundaria local. Allí se destacó en matemática por encima de todas las materias, y desarrolló una facilidad inusual y amor por esta disciplina. Ya estaba leyendo el famoso Journal de Crelle en 1834 cuando ingresó a un programa de finanzas en la Universidad de Bonn. La carrera de finanzas no era elección de Weierstrass sino de su padre; en rebeldía y con espíritu de aflicción Weierstrass desperdició sus años universitarios con exceso de alcohol y mucho tiempo de dedicación a la esgrima. Aunque no asistía a la mayoría de sus clases, Weierstrass continuó con sus clases privadas.

En 1840, Weierstrass aprobó sus exámenes con excelentes resultados, habiendo demostrado una cierta derivación de Niels Henrik Abel a partir de una ecuación diferencial; su examinador pensó que la prueba era digna de publicación. Weierstrass pasó a enseñar en la escuela secundaria de Münster, y escribió tres artículos entre 1841 y 1842 sobre variables complejas. En estos documentos reformuló el concepto de función analítica en términos de series de potencias convergentes, en oposición al típico enfoque a través de la diferenciación. Mientras tanto, enseñó una variedad de temas, como historia, geografía e incluso gimnasia, y se aburrió por completo. La carga de trabajo era bastante pesada, porque realizaba investigaciones sobre matemática teórica en cada momento libre. Este ajetreo puede haber causado sus problemas de salud posteriores, que comenzaron en 1850: sufrió ataques de mareos, seguidos de náuseas.

Weierstrass trabajó en Brauensberg desde 1848, pero después de la publicación en 1854 de su Toward the Theory of Abelian Functions, que fue ampliamente aclamado por los matemáticos, recibió varias ofertas de universidades destacadas. Este artículo esbozaba la representación de funciones abelianas como series de potencias convergentes, y la Universidad de Königsberg le confirió un doctorado honorario en 1854. Ernst Eduard Kummer intentó conseguir un puesto para Weierstrass en la Universidad de Breslau, pero este intento fracasó. Weierstrass permaneció como profesor titular en Brauensberg hasta 1856, cuando aceptó el trabajo de sus sueños en la Universidad de Berlín. Mientras tanto, publicó un seguimiento de su artículo de 1854, que daba todos los detalles de su método de inversión de integrales hiperelípticas.

El mandato de Weierstrass en Berlín, junto con Kummer y Leopold Kronecker, convirtió a esa escuela en la meca matemática de Alemania en ese momento. Las concurridas conferencias de Weierstrass de los próximos años dan una idea de la diversidad y la profundidad de su investigación matemática: en 1856 discutió la teoría de las funciones elípticas aplicadas a la geometría y la mecánica, en 1859 abordó los fundamentos del análisis y en 1860 impartido conferencias sobre cálculo integral. Sus investigaciones produjeron una función continua que no era diferenciable en ninguna parte; la existencia de una función tan extraña destrozó la excesiva dependencia de la mayoría de los analistas en la intuición, ya que hasta ese momento los matemáticos solo podían concebir la no diferenciabilidad que ocurre en puntos aislados. El curso de Weierstrass de 1863 fundó la teoría de los números reales, un área en la que otros matemáticos como Richard Dedekind y George Cantor, también trabajarían. Él demostró que los números complejos son la única extensión algebraica conmutativa de los números reales, un resultado que Carl Friedrich Gauss declaró anteriormente pero nunca probó.

Los problemas de salud de Weierstrass continuaron y experimentó un colapso total en 1861; se tomó el año siguiente para recuperarse, pero nunca fue el mismo. A partir de ese momento, tuvo un asistente para escribir sus conferencias, y los dolores crónicos en el pecho reemplazaron su mareo.

Weierstrass organizó sus diversas conferencias en cuatro cursos principales: funciones analíticas, funciones elípticas, funciones abelianas y el cálculo de variaciones. Los cursos eran frescos y estimulantes, ya que gran parte del material era su propia investigación innovadora. Es un testimonio del legado de su estilo que los cursos modernos de análisis siguen la progresión de temas de Weierstrass, incluido el concepto de serie de potencia de una función, continuidad y diferenciabilidad y continuación analítica.

Weierstrass colaboró con Kummer y Kronecker de manera rentable durante muchos años, pero luego él y Kronecker se separaron de las ideas radicales de Cantor; Weierstrass apoyaba las ideas innovadoras de Cantor en teoría de conjuntos, pero Kronecker no podía aceptar las construcciones patológicas. Weierstrass tuvo muchos estudiantes excelentes, algunos de los cuales se convirtieron en matemáticos famosos, como Cantor, Sophus Lie y Felix Klein. Instruyó en privado a Sofia Vasilyevna Kovalévskaya, a quien no se le permitió inscribirse formalmente debido a su género. Weierstrass tuvo una gran relación intelectual con esta mujer, a quien ayudó a encontrar un puesto adecuado.

Weierstrass estaba muy preocupado por el rigor matemático. Sus altos estándares quedaron impresos para la generación siguiente y provocaron una intensiva investigación sobre los fundamentos de la matemática, como la construcción del sistema de números reales. Los estudios de convergencia de Weierstrass lo llevaron a distinguir diferentes tipos, lo que provocó la investigación en varias topologías para espacios de funciones. Estudió el concepto de convergencia uniforme, que preserva la continuidad, e ideó varias pruebas para la convergencia de series y productos infinitos. Su enfoque de publicación fue cuidadoso y metódico, por lo que sus publicaciones fueron pocas pero extremadamente profundas y exactas.

Weierstrass continuó enseñando hasta 1890. Sus últimos años se dedicaron a publicar los trabajos recopilados de Jakob Steiner y Carl Jacobi. Murió de neumonía el 19 de febrero de 1897 en Berlín, Alemania. Sus contribuciones a la matemática, en particular al análisis real y complejo, fueron extensas y de gran alcance, lo que le valió el epíteto de “padre del análisis moderno”. Su influencia también se extendió a través de la gran cantidad de estudiantes talentosos a quienes dirigió y que además desarrolló sus ideas en varias nuevas direcciones. Desde sus humildes comienzos como profesor de secundaria, Weierstrass logró grandes cosas para el campo de la matemática.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Vito Volterra ayudó a extender las ideas del cálculo diferencial e integral de conjuntos a espacios de funciones. Su trabajo en biología también contribuyó a desarrollar conceptos matemáticos, como los vinculados a las ecuaciones diferenciales parciales, que influyeron en las relaciones depredador-presa. Es más famoso por su trabajo en ecuaciones integrales, produciendo las “ecuaciones integrales del tipo Volterra”, que se aplicaron ampliamente a problemas mecánicos.

Vito Volterra nació el 3 de mayo de 1860 en Ancona (una ciudad en los Estados Pontificios de Italia) en una familia pobre. Su padre murió cuando Volterra tenía solo dos años y se desconoce su formación inicial. Se interesó por la matemática después de leer Geometry de Adrien-Marie Legendre a los 11 años, y dos años más tarde comenzó a estudiar el problema de los tres cuerpos, una pregunta destacada en la teoría de los sistemas dinámicos.

Volterra asistió a conferencias en Florencia y luego se matriculó en Pisa en 1878; allí estudió bajo la dirección de Enrico Betti, y obtuvo su doctorado en 1882 con una tesis sobre hidrodinámica. Betti murió al año siguiente, y Volterra lo sucedió como profesor de matemática en la Universidad de Pisa. Luego sirvió tanto en Turín como en Roma.

Volterra fue el primer matemático en concebir lo que más tarde se conocería como “funcional”, una función de funciones a valor real. Un ejemplo de funcional (esta terminología fue introducida posteriormente por Jacques Hadamard) es la operación de integración, que produce un valor real para cada función de entrada. Volterra pudo extender los métodos integrales de Sir William Rowan Hamilton y Carl Jacobi para ecuaciones diferenciales a otros problemas de mecánica, y desarrolló un cálculo funcional completamente nuevo para realizar los cálculos necesarios. Hadamard, Maurice René Fréchet y otros pensadores más tarde desarrollaron esta idea original.

De 1892 a 1894 Volterra pasó a tratar ecuaciones diferenciales parciales, investigando la ecuación de la onda cilíndrica. Sus resultados más famosos fueron en el área de ecuaciones integrales, que relacionan las integrales de varias funciones desconocidas. Después de 1896, Volterra publicó varios artículos en esta área; estudió lo que se llegó a conocer como “ecuaciones integrales del tipo Volterra”. Pudo aplicar su análisis funcional a estas ecuaciones integrales con considerable éxito.

A pesar de su edad, Volterra se unió a la fuerza aérea italiana durante la Primera Guerra Mundial, ayudando con el desarrollo de dirigibles en armas de guerra. Luego regresó a la Universidad de Roma. Promovió la colaboración científica y luego recurrió a las ecuaciones depredador-presa de biología, estudiando la curva logística. En 1922, el fascismo se extendió por Italia y Volterra luchó con vehemencia contra esta ola de opresión como miembro del parlamento italiano. En 1830 los fascistas tomaron el control y Volterra se vio obligado a huir de Italia. Pasó el resto de su vida en el extranjero en Francia y España. Sin embargo, regresó a Italia antes de su muerte el 11 de octubre de 1940 en Roma.

Volterra fue importante como fundador del análisis funcional, que ha sido una de las ramas más aplicadas de las matemáticas en el siglo XX. Las ecuaciones integrales se han empleado con éxito para resolver muchos problemas científicos, y el trabajo de Volterra produjo un gran avance en el conocimiento de estas ecuaciones.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Pocos matemáticos pueden compararse con Bernhard Riemann en términos de creatividad y profundidad de conocimiento. No solo encontró la nueva disciplina de la geometría riemanniana que se volvería tan importante para la teoría de la relatividad general un siglo más tarde, sino que también avanzó significativamente en otros campos de la matemática, incluido el análisis complejo, la teoría de funciones elípticas, las ecuaciones diferenciales y la teoría de la integración y topología. Es quizás más famoso por descubrir la función zeta de Riemann, que es importante para la teoría analítica de números. Como las de muchos genios, las ideas de Riemann eran tan avanzadas que pocos podían aceptarlas inmediatamente; después de su temprana muerte, el impacto de su investigación comenzó a apreciarse.

Georg Friedrich Bernhard Riemann nació el 17 de septiembre de 1826 en Breselenz, Alemania. Su madre fue Charlotte Ebell, y su padre Friedrich Bernhard Riemann. Riemann mantuvo una estrecha relación con su padre, un ministro luterano, durante toda su vida. Fue el segundo de seis hijos. Su padre lo educó personalmente hasta que tenía 10 años, y en 1842 el niño ingresó en el Johanneum Gymnasium en Lüneburg. Era un buen alumno, pero aún no mostraba un talento extraordinario en la matemática. Aunque sus estudios principales fueron clásicos y teológicos, se interesó por la matemática después de devorar rápidamente un libro de teoría de números de Adrien-Marie Legendre.

En 1846, Riemann se matriculó en la Universidad de Göttingen, donde siguió estudiando matemática. Aunque Carl Friedrich Gauss enseñaba allí en ese momento, no reconoció el talento de Riemann, al igual que algunos de sus otros maestros. Al año siguiente, Riemann se trasladó a la Universidad de Berlín, donde pudo estudiar con Carl Jacobi y Peter Lejeune Dirichlet; este último fue especialmente influyente en Riemann, quien adoptó su enfoque intuitivo y no computacional para las ideas matemáticas. Gran parte del trabajo de Riemann carecía del rigor preciso común en ese momento: centró sus energías en desarrollar conceptos y marcos correctos para comprender la matemática. Durante este tiempo formuló los principios básicos de su teoría de variables complejas.

Riemann regresó a Göttingen en 1849 para un trabajo de doctorado, y presentó su tesis, dirigida bajo la supervisión de Gauss, en 1851. Este trabajo presenta los objetos geométricos que se conocieron como superficies de Riemann. Fue influenciado por ideas de la física y la topología, y aplicó estas técnicas en su análisis de estas superficies, basándose en la teoría más básica de las variables complejas de Augustin-Louis Cauchy. Algunos de sus resultados se probaron utilizando una técnica variacional conocida como principio de Dirichlet (Riemann atribuyó el método a Dirichlet, aunque Gauss y otros lo habían desarrollado anteriormente). Esta tesis fue sorprendente por su originalidad, incluso el soberano Gauss quedó impresionado.

Para su trabajo postdoctoral, Riemann comenzó a investigar la representación de funciones en términos de una base de funciones trigonométricas (análisis de Fourier); en el curso de su investigación, desarrolló una rigurosa teoría de la integración, construyendo lo que más tarde se conocería como la integral de Riemann de una función. Estaba trabajando en Göttingen, y Gauss le exigió que diera una conferencia sobre geometría para completar su beca; la conferencia de Riemann sobre geometría más tarde se hizo muy famosa, ya que estableció los principios básicos y las ideas claves detrás de la teoría de la geometría diferencial. Esta conferencia de 1854 desarrolló conceptos generales de espacio, dimensión, líneas rectas, métricas, ángulos y lugares tangentes para superficies curvas. El resultado de esta exposición notablemente original fue el establecimiento de la geometría diferencial como un campo importante de investigación matemática (hubo trabajos anteriores sobre geometría diferencial, pero Riemann plantó las ideas principales que continuarían guiando el tema a lo largo del próximo siglo), que luego resultó tener una aplicación notable a la teoría general de la relatividad: Albert Einstein, a principios del siglo XX, describió la fuerza de la gravedad como esencialmente una curvatura del espacio, y la teoría geométrica de Riemann fue la base matemática perfecta para esta importante nueva rama de la física.

Esta conferencia probó el concepto fundamental de espacio con una profundidad notable, y pocos científicos y matemáticos pudieron apreciar el genio extraordinario del pensamiento penetrante de Riemann; quizás solo Gauss fue capaz de comprender verdaderamente el significado del nuevo paradigma. Riemann luego pasó a la teoría de las ecuaciones diferenciales parciales, tema sobre el que dio un curso con poca asistencia. Obtuvo una cátedra en Göttingen en 1857, el mismo año en que publicó la teoría de las funciones abelianas. Este trabajo investiga más a fondo las propiedades topológicas de las superficies de Riemann, así como los llamados problemas de inversión. Aunque otros matemáticos, incluido Karl Weierstrass, trabajaban en esta área, el trabajo de Riemann fue tan amplio que se convirtió en un pensador destacado en esta rama de la matemática. Riemann utilizó nuevamente el principio de Dirichlet para sus resultados, y Weierstrass declaró que no era válido para las aplicaciones de Riemann. La búsqueda de una prueba alternativa durante las siguientes décadas condujo a varios otros desarrollos algebraicos fructíferos; David Hilbert finalmente dio la formulación correcta y la prueba de los resultados de Riemann a finales de siglo. Como resultado de la correcta crítica de Weierstrass, muchos matemáticos abandonaron las teorías desarrolladas por Riemann, quien sostuvo que eran ciertas.

En 1858, Riemann recibió la visita de Enrico Betti, quien importó las ideas topológicas de Riemann a su propio trabajo. El año siguiente murió Dirichlet, y Riemann lo reemplazó como presidente de matemática en Göttingen; también fue elegido para la Academia de Ciencias de Berlín a través de las fuertes recomendaciones de Ernst Eduard Kummer y Weierstrass. La siguiente área de investigación de Riemann fue la teoría de números: exploró la función zeta, ya definida por Leonhard Euler, extendiéndola primero al plano complejo. Esta función zeta da la suma de varias series infinitas y ya se sabía que estaba relacionada con el conjunto de números primos. El trabajo de Riemann amplió enormemente el conocimiento de esta función, así como sus aplicaciones; la famosa hipótesis de Riemann, que sigue sin resolverse hoy en día, establece que todas las raíces no triviales de la función zeta se encuentran en la línea en el plano complejo definida por los números complejos cuya parte real es igual a un medio. Esta extraña conjetura ha sido ampliamente verificada numéricamente, pero una prueba completa ha escapado a los esfuerzos concertados de cientos de matemáticos. La función zeta tiene varias aplicaciones para la teoría numérica analítica, como estimar el número de primos menores que un entero dado.

Riemann sufrió de mala salud durante toda su vida. Su constitución débil más tarde impediría su investigación y le quitaría la vida prematuramente. Se casó con Elise Koch en 1862, pero poco después contrajo un resfriado y luego desarrolló tuberculosis. Pasó gran parte de su tiempo en los próximos años en el extranjero, en Italia, con la esperanza de que el clima más suave alivie su enfermedad. Regresó a Göttingen en 1865, y su salud declinó rápidamente a partir de entonces; viajó a Italia en 1866 nuevamente por razones de salud, pero no se recuperó. Murió el 20 de julio de 1866 en Selasca, Italia.

Riemann fue fácilmente uno de los matemáticos más influyentes y creativos del siglo XIX y, de hecho, de toda la historia. Afectó de manera significativa la geometría y el análisis complejo sobre todo, proporcionando esencialmente el marco a través del cual se estudian estos temas hoy. Y las preguntas y los problemas profundos que abordó en el campo de la geometría son extremadamente relevantes para las concepciones modernas del universo físico. Su trabajo en teoría de números ha estimulado un esfuerzo de investigación sin igual: la investigación de la función zeta de Riemann debe ser uno de los campos de actividad matemática más concurridos. Gauss estaría de acuerdo en que Riemann fue sin duda uno de los mejores matemáticos que este mundo ha visto.

En Septiembre del año pasado (2018) ocurrió un hecho de gran trascendencia en Heidelberg Laureate Forum. El matemático Michael Atiyah (1929-2019) anunciaba haber demostrado finalmente la Hipótesis de Riemann. Su conferencia fue vista por decenas de miles de personas por internet y numerosos ciudadanos mostraron su entusiasmo en Twitter, alabando al octogenario experto: “Los héroes a veces no llevan capa”.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »