Feeds:
Entradas
Comentarios

Posts Tagged ‘Carl Jacobi’

Legendre fue una figura importante en la transición de la matemática de los siglos XVIII al XIX. Sus contribuciones a la teoría de números y al análisis plantearon muchas preguntas importantes que los futuros matemáticos tendrían que resolver. También fue uno de los fundadores de la teoría central de las funciones elípticas. 

Adrien-Marie Legendre nació el 18 de septiembre de 1752 en París, Francia. Su familia era rica, y Legendre recibió una excelente educación científica en las escuelas de París. En 1770 defendió sus tesis sobre matemáticas y física en el Collège Mazarin. 

Legendre tenía una modesta fortuna, lo que le daba la libertad de seguir una investigación matemática en su tiempo libre. Sin embargo, enseñó matemática en la École Militaire de París de 1775 a 1780. Legendre ganó un premio de la Academia de Berlín en 1782, con un artículo sobre la trayectoria de las balas de cañón y las bombas, teniendo en cuenta la fricción aérea. En los próximos años aumentó su producción científica, intentando ganar más renombre entre los científicos franceses; estudió las atracciones mutuas de los cuerpos planetarios, ecuaciones indeterminadas de segundo grado, fracciones continuas, probabilidad y la rotación de los cuerpos en aceleración. A lo largo de su vida, las áreas de investigación favoritas de Legendre fueron la mecánica celeste, la teoría de números y las funciones elípticas. 

En 1786, Legendre publicó Traité des functions elliptiques (Tratado sobre funciones elípticas) donde describía los métodos para discriminar entre máximos y mínimos en el cálculo de variaciones, y las llamadas condiciones de Legendre dieron lugar a una extensa literatura. También estudió la integración por medio de arcos elípticos, que fue realmente un primer paso en la teoría de las funciones elípticas. Alrededor de este tiempo fue promovido en la Academia de Ciencias y contribuyó a algunos problemas geodésicos, aportando su experticia en el ámbito la trigonometría esférica. 

Luego Legendre estudió las ecuaciones diferenciales parciales, expresando la llamada transformación de Legendre. Él autoeditó su trabajo de 1792 sobre los trascendentales elípticos, ya que el gobierno francés suprimió las academias. Este fue un tiempo agotador para Legendre. Se casó con una joven, Marguerite Couhin, mientras que la Revolución Francesa destruyó su fortuna personal. Su joven esposa pudo darle estabilidad emocional mientras él continuaba escribiendo nuevos trabajos científicos. 

En 1794, Legendre recibió un nuevo puesto relacionado con pesos y medidas. Mientras tanto, publicó sus Elementos de Geometría, que dominarían la instrucción elemental en geometría durante el próximo siglo. En la siguiente década dirigió el cálculo de nuevas tablas trigonométricas altamente precisas; éstas se basaban en las nuevas técnicas matemáticas del cálculo de variaciones.  

Resultado de imagen para legendre

Legendre publicó su Ensayo sobre la teoría de números en 1798, que amplió su trabajo anterior de 1785, con material sobre ecuaciones indeterminadas, la ley de reciprocidad de los residuos cuadráticos, la descomposición de los números en tres cuadrados y las progresiones aritméticas. Su trabajo de 1806 sobre las órbitas de los cometas dio la primera exposición pública del método de los mínimos cuadrados. Sin embargo, Legendre se enfureció al saber que Carl Friedrich Gauss había estado usando el método en privado desde 1795. 

En las décadas siguientes, Legendre amplió la teoría de las funciones elípticas, las ecuaciones indeterminadas y la trigonometría esférica. Su trabajo en teoría de números fue notable por la ley de reciprocidad cuadrática. Hizo una demostración imperfecta de esta ley en 1785, y Gauss la probó rigurosamente en 1801. Legendre contribuyó al conocimiento del Último Teorema de Fermat, estableciendo el resultado en un caso especial, y fue un precursor de la teoría analítica de números: estudió la distribución de los números primos, declarando sus asintóticos en 1798. Sus mejores logros se encuentran en la teoría de las funciones elípticas; expandiendo el trabajo de Leonhard Euler y Joseph-Louis Lagrange, Legendre esencialmente fundó esta teoría en 1786 al expresar integrales elípticas en términos de ciertos tipos más básicos llamados trascendentales. Como calculadora maestra, Legendre desarrolló extensas tablas para los valores de estas funciones elípticas. Niels Henrik Abel y Carl Jacobi, desarrollaron sustancialmente sus primeros trabajos en los años siguientes. Legendre sucedió a Pierre-Simon Laplace en 1799 como examinador de matemática en la escuela de artillería, y renunció en 1815, sucediendo a Lagrange en el Bureau de Longitudes en 1813. Recibió varios honores, incluida la membresía en la Legión de Honor. El 9 de enero de 1833 murió en París después de una dolorosa enfermedad.  

El enfoque de Legendre hacia la matemática era típico del siglo XVIII. Muchos de sus argumentos carecían de rigor, y era muy escéptico ante innovaciones tales como la geometría no euclidiana. Fue, en muchos aspectos, un discípulo de Euler y Lagrange, cuya visión de la matemática lo influenció enormemente. Pero las contribuciones de Legendre a la teoría de números y las funciones elípticas llevaron a arenas de investigación completamente nuevas, y es aquí donde su impacto fue tan pronunciado.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

 

Anuncios

Read Full Post »

Ernst Kummer fue uno de los grandes matemáticos creativos del siglo XIX, contribuyendo a la teoría de funciones, el álgebra y la geometría. Se le atribuyen varias técnicas e ideas matemáticas, y sus esfuerzos ayudaron a avanzar en la matemática moderna. 

Ernst Kummer nació el 29 de enero de 1810, en Sorau, Alemania, hijo de Carl Gotthelf Kummer, un médico que murió en 1813, y Frederike Sophie Rothe. Kummer ingresó en la escuela secundaria de Sorau en 1819, y estudió teología protestante en la Universidad de Halle en 1828. Sin embargo, pronto comenzó a estudiar matemática, en principio como preparación para la filosofía. En 1831 recibió su doctorado, y enseñó matemática y física en el Gymnasium de Liegnitz desde 1832 a 1842. Durante este tiempo, Leopold Kronecker fue uno de sus estudiantes, y Kummer pudo fomentar su talento natural. 

Su investigación en este tiempo se centró en las series hipergeométricas introducidas por Carl Friedrich Gauss. Kummer investigó más profundamente que nadie, obteniendo varios descubrimientos notables. Los intentos fallidos de probar el Último Teorema de Fermat llevaron a Kummer a estudiar la factorización de enteros y desarrollar la teoría de los ideales. También descubrió la superficie de Kummer, una variedad de cuatro dimensiones con 16 puntos dobles cónicos y 16 planos tangentes singulares. Maestro dotado, logró inspirar a varios estudiantes a llevar a cabo investigaciones independientes. Anteriormente había enviado parte de su trabajo sobre la teoría de funciones a Carl Jacobi, quien lo ayudó a obtener una cátedra en la Universidad de Breslau en 1842. En 1840 Kummer se casó con Ottilie Mendelssohn, prima de la esposa de Peter Lejeune Dirichlet. Ocupó su cargo en Breslau hasta 1855, y allí realizó su importante trabajo sobre la teoría de números y álgebra. Kummer introdujo números ideales y factores primos ideales para demostrar un gran teorema de Pierre de Fermat. En años posteriores, Kronecker y Richard Dedekind desarrollaron aún más sus resultados iniciales. 

En 1855, Dirichlet abandonó la Universidad de Berlín para suceder a Gauss en Göttingen, y Kummer fue nombrado reemplazo de Dirichlet. En 1856, tanto Karl Weierstrass como Kronecker también habían llegado a Berlín, iniciando un período de productividad matemática en la universidad. Kummer y Weierstrass construyeron el primer seminario alemán de matemática pura en 1861, que atrajo a muchos jóvenes estudiantes. Las conferencias de Kummer, que cubrían temas como geometría analítica, mecánica y teoría de números, fueron muy concurridas debido a su excelente exposición. 

Kummer fue bendecido con una inmensa cantidad de energía. Enseñó simultáneamente en la Kriegsschule de 1855 a 1874, fue secretario de la sección matemática de la Academia de Berlín de 1863 a 1878, y se desempeñó varias veces como decano y rector de la Universidad de Berlín. Durante esta última fase de su carrera, Kummer se centró en la geometría, con aplicaciones en sistemas de rayos y balística. Su estudio de los sistemas de rayos siguió el trabajo de Sir William Rowan Hamilton, aunque Kummer adoptó una perspectiva algebraica. En el curso de esta investigación, descubrió la llamada superficie de Kummer. Numerosos conceptos matemáticos han sido nombrados después de él. 

Cuando Kronecker y Weierstrass se separaron en la década de 1870, Kummer también podría haberse alejado de Weierstrass. Ciertamente, Kummer era política y matemáticamente conservador, evitando muchos de los nuevos desarrollos. Por ejemplo, Kummer rechazó la geometría no euclidiana por inútil. También consideraba la matemática como una ciencia pura, y creía que el atractivo de la matemática estaba en su escasez de aplicaciones. Cabe destacar que esta ha sido probablemente la opinión de los matemáticos durante la mayor parte de la historia, y solo en la era moderna surgió la opinión de que la matemática es valiosa solo si puede contribuir a la tecnología y al mejoramiento de la sociedad. 

En 1882 Kummer se retiró de su puesto, afirmando que su memoria se había debilitado. Murió el 14 de mayo de 1893 en Berlín. Tanto Gauss como Dirichlet ejercieron una gran influencia sobre el desarrollo de Kummer como matemático, y él sintió siempre un gran respeto por ambos. A pesar de su conservadurismo, Kummer pudo afectar influir en el desarrollo de la matemática a través de sus numerosos alumnos y su creatividad en bruto. Su trabajo en álgebra sobre la aritmetización de la matemática fue quizás el más importante.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

En la Alemania de principios del siglo XIX, Carl Jacobi se ubicó entre los principales sucesores matemáticos de Carl Friedrich Gauss. Jacobi se distinguió por sus numerosas contribuciones al análisis, especialmente en el área de las integrales elípticas; por la diversidad de su actividad y la amplitud de su intelecto ha sido comparado con Leonhard Euler

Nacido el 10 de diciembre de 1804 en Potsdam, Alemania, Jacobi fue el segundo hijo de Simon Jacobi, un adinerado banquero judío, y recibió una excelente educación de su tío. Jacobi tenía un hermano mayor, Moritz, que se hizo físico en San Petersburgo, y un hermano y hermana menores. Jacobi era intelectualmente avanzado cuando niño, y entró en la escuela secundaria en Potsdam en 1816. Pronto fue promovido a la clase más alta a pesar de su juventud; cuando se graduó en 1821, Jacobi ya dominaba el griego, el latín y la historia, y poseía un amplio conocimiento de  matemática: ya había intentado la solución de la ecuación de quinto grado. 

Jacobi fue a la Universidad de Berlín, donde se concentró en la matemática. Trabajando en privado, pronto dominó los trabajos de Euler, Joseph-Louis Lagrange y varios otros matemáticos destacados. En 1824 aprobó sus exámenes preliminares, y pronto presentó una  tesis para Ph.D. Después de convertirse al cristianismo se le permitió comenzar su carrera académica en la Universidad de Berlín a la temprana edad de 20 años. 

Las conferencias de Jacobi eran estimulantes, ya que describía su investigación actual a su audiencia. Su primera conferencia en 1825 trató sobre la teoría analítica de curvas y superficies. Este fue el período más prolífico de Jacobi, y estableció contacto con colegas matemáticos como Gauss, Adrien-Marie Legendre y Niels Henrik Abel. Gran parte de la investigación de Jacobi se basó y desarrolló las exploraciones de Gauss. Legendre fue el primero en estudiar integrales elípticas de forma sistemática, y tanto Abel como Jacobi se convirtieron en herederos intelectuales, compitiendo en sus investigaciones acerca de funciones trascendentales.   

Jacobi se mudó a la Universidad de Königsberg en 1826, ya que había más oportunidades para avanzar allí. A través de las interacciones con Friedrich Wilhelm Bessel, Jacobi se interesó cada vez más en problemas aplicados. Las publicaciones de Jacobi disfrutaron de una gran popularidad, y pronto se convirtió en profesor asociado en 1827 y profesor titular en 1832. Durante sus 18 años en Königsberg, Jacobi produjo resultados sorprendentes en la teoría de funciones elípticas, análisis, teoría de números, geometría y mecánica. Muchos de sus trabajos fueron publicados en el Journal for Pure and Applied Mathematics de Crelle, y Jacobi fue en parte responsable de su ascenso a renombre internacional. A pesar de que enérgicamente perseguía su investigación, Jacobi también daba una conferencia de aproximadamente 10 horas a la semana, a menudo discutiendo los avances más recientes en el conocimiento. Jacobi desarrolló un seminario de investigación, esencialmente una colección de estudiantes avanzados, y también alentó el enfoque orientado a la investigación de la enseñanza universitaria. 

Jacobi se casó con Marie Schwinck en 1831, y tuvo cinco hijos y tres hijas con ella. Viajó a París en 1829 para conocer a los principales matemáticos franceses y visitó a Legendre, Jean Baptiste Joseph Fourier y Siméon Denis Poisson, . Más tarde, asistió a una conferencia matemática en Gran Bretaña en 1842. En 1843, Jacobi enfermó de diabetes y viajó por Italia con la esperanza de que el clima más benigno mejorara su salud; a su regreso, Jacobi regresó a Berlín y de vez en cuando daba conferencias en la Universidad de ese lugar. 

Hasta este momento, la investigación de Jacobi se refería principalmente a las funciones elípticas. Un resumen de sus resultados iniciales se publicó en Fundamenta nova theoriae functionum ellipticarum (Nuevos fundamentos de la teoría de las funciones elípticas) en 1829; en este documento Jacobi discutió la transformación y representación de funciones elípticas, revelando muchas de las propiedades más importantes. Una de las ideas importantes de Jacobi (que fue desarrollada independientemente por Abel y Gauss) fue la inversión de una integral elíptica, y esto dio lugar a varias fórmulas importantes. Junto con Abel, Jacobi también introdujo números imaginarios en la teoría de las funciones elípticas y descubrió su doble periodicidad. A lo largo de su competencia con Abel, Jacobi se mantuvo generoso y obstinado, abogando por el término abeliano para ciertos resultados en funciones trascendentales. Más tarde, en el mismo trabajo, Jacobi expresó estas integrales como productos infinitos, y pudo aplicar sus resultados a la teoría de números; por ejemplo, pudo demostrar que cualquier número entero se puede representar como la suma de cuatro cuadrados como máximo, lo que había sido conjeturado previamente por Pierre de Fermat

Este trabajo continuó durante la década de 1830, con resultados adicionales sobre la función theta. En teoría de números, Jacobi estudió la teoría de los residuos, las formas cuadráticas y las representaciones de los enteros como sumas de cuadrados y cubos. Jacobi también contribuyó al campo de las ecuaciones diferenciales parciales (en donde introdujo las funciones elípticas), a la física matemática (Jacobi estudió las configuraciones de masas líquidas rotatorias) y a la teoría de los determinantes. Jacobi hizo una presentación sistemática de los determinantes en 1841, e introdujo el “jacobiano”, el determinante utilizado en el cambio de cálculos de variables en el cálculo integral. Además de estos trabajos en matemática, Jacobi dio una conferencia sobre la historia de la matemática e incluso comenzó el inmenso proyecto de producir un volumen de las obras completas de Euler. 

Jacobi se interesó en Euler como un alma gemela, ya que su visión de la matemática era similar. Jacobi, como Euler, era un buen calculador y disfrutaba de una perspectiva algorítmica para resolver problemas; era versátil en muchas áreas de la matemática, y escribió prolíficamente. 

Cometió algunos errores políticos en 1848, alienándose de la monarquía prusiana. Como resultado, su salario se redujo y se vio obligado a vender su casa en Berlín. En 1849 recibió una oferta de Viena, y Prusia le restauró su salario, evidentemente no querían perder a un matemático tan eminente. En 1851, Jacobi contrajo gripe seguido de viruela, lo que resultó fatal. Murió el 18 de febrero de 1851 en Berlín. Su buen amigo Peter Lejeune Dirichlet pronunció un panegírico en 1852, describiendo a Jacobi como el mejor matemático de la Academia de Berlín desde Lagrange. 

El trabajo de Jacobi abarcó varios campos, pero su trabajo sobre funciones elípticas e integrales es el más significativo. En su propio tiempo fue reconocido, junto con Dirichlet, como uno de los mejores matemáticos alemanes. Sin embargo, incluso después de su muerte, su trabajo continuó siendo influyente; dejó atrás una escuela de matemáticos y un impresionante cuerpo de ideas matemáticas.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »