Feeds:
Entradas
Comentarios

Posts Tagged ‘Élie-Joseph Cartan’

Hermann Weyl, uno de los grandes matemáticos de principios del siglo XX, desarrolló con éxito las ideas de otros en teorías rigurosas. Sus documentos son notables por su originalidad y profundidad de conocimiento, y su trabajo ha ejercido una gran influencia en la investigación actual.

Hermann Weyl nació el 9 de noviembre de 1885 en Elmshorn, Alemania. Cuando era niño, asistió al Gymnasium en Altona e ingresó a la Universidad de Gotinga a los 18 años. Permaneció allí durante varios años estudiando matemática. Después de obtener su título, se convirtió en profesor en la Universidad de Zurich en 1913.

Weyl había estudiado con David Hilbert en Gotinga y seguramente fue uno de sus alumnos más talentosos. El primer trabajo importante de Weyl, que data de 1910, fue sobre la teoría espectral de las ecuaciones diferenciales, que era un área que Hilbert también estaba investigando. En 1911 comenzó a estudiar la teoría espectral de ciertos operadores en los llamados espacios de Hilbert. Sus métodos proporcionaron una idea geométrica de estos espacios abstractos y se convirtieron en técnicas importantes dentro del análisis funcional.

En 1916 Weyl publicó un famoso artículo sobre teoría analítica de números, que trata la distribución de ciertas secuencias especiales de números. Con un ingenio característico, dio una solución novedosa a preguntas no resueltas haciendo conexiones con la teoría de la integración. Sus técnicas han seguido siendo relevantes para la teoría aditiva de números.

Después de este trabajo en teoría de números, Weyl volvió a la geometría (anteriormente, en 1913, había dado una base rigurosa para la definición intuitiva de una variedad riemanniana). En 1915 atacó un problema relacionado con ciertas deformaciones de superficies convexas, y describió un método de demostración que finalmente resultaría fructífero. Weyl vió interrumpido su trabajo a raíz de la Primera Guerra Mundial, pero fue liberado del servicio militar en 1916. En Zurich trabajó con Albert Einstein y, en consecuencia, se interesó en la teoría general de la relatividad. Se propuso proporcionar una base matemática para las ideas físicas, descubriendo el concepto de conexión lineal. Élie-Joseph Cartan desarrolló aún más esta importante idea.

En la década de 1920, Weyl se interesó en los grupos de Lie, y sus artículos sobre este tema son probablemente los más importantes e influyentes. Parte del genio de su enfoque fue el uso de métodos topológicos sobre objetos algebraicos como los grupos de Lie. Sophus Lie había introducido los grupos de Lie como un nuevo e interesante campo de la matemática, pero Weyl avanzó mucho en esta rama a través de su nueva metodología.

Como matemático, Weyl creía en la importancia de las teorías abstractas, y creía que eran capaces de resolver problemas clásicos cuando se combinaban con un pensamiento cuidadoso y penetrante. Difirió con el formalista Hilbert en la filosofía de los fundamentos matemáticos, y en su lugar aceptó el intuicionismo de Luitzen Egbertus Jan Brouwer. Sin embargo, en muchos otros aspectos, mostró la influencia de Hilbert. En 1930 sucedió a Hilbert en Gotinga, pero decidió abandonar la Alemania nazi en 1933, llegando al Instituto de Estudios Avanzados de Princeton. Permaneció en los Estados Unidos hasta que se retiró en 1951. Dividió los últimos años de su vida entre Princeton y Zurich. Murió el 8 de diciembre de 1955.

Hermann Weyl realizó varias contribuciones significativas a la teoría de números, la geometría y las ecuaciones diferenciales. Cuando resolvía un problema difícil, a menudo ideaba una técnica completamente nueva para la demostración; Estos nuevos métodos generalmente se convirtieron en herramientas estándar o, a veces, condujeron a nuevas áreas de investigación. Su trabajo sobre la teoría de los grupos de Lie proporcionó una base para avances posteriores.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Una de las ramas más populares y elegantes de la matemática en el siglo XX ha sido la teoría de grupos de Lie. Esta disciplina combina ideas de álgebra, geometría y análisis, y es relevante para la física teórica. Sophus Lie descubrió estos objetos por primera vez y, por lo tanto, fundó una arena fructífera para futuras investigaciones. 

Marius Sophus Lie, comúnmente conocido como Sophus Lie, nació el 17 de diciembre de 1842 en Nordfjordeide, Noruega. Fue el sexto y más joven hijo de Johann Lie, un pastor luterano. Asistió a una escuela local y, desde 1857 hasta 1859, estudió en la Private Latin School de Nissen en Oslo. De 1859 a 1865 continuó su educación en la Universidad de Christiania en Oslo. Originalmente mostró poco interés en la matemática. Después de su examen en 1865, Lie dio lecciones privadas y se interesó por la astronomía. 

La vida de Lie adquirió una nueva dirección después de que descubriera en 1868 algunos artículos geométricos de los matemáticos Jean-Victor Poncelet y Julius Plücker. La idea de que el espacio podría estar formado por líneas en lugar de puntos tuvo un profundo impacto en la concepción de la geometría de Lie. Obtuvo una beca en el extranjero, viviendo en Berlín durante el invierno de 1869, donde conoció a Felix Klein. Los esfuerzos científicos de ambos hombres se beneficiaron enormemente de la amistad que siguió. Klein era un algebraista intrigado por problemas particulares, mientras que Lie era un geómetra y analista interesado en generalizar conceptos. 

Pasaron el verano de 1870 en París, donde entraron en contacto con Camille Jordan y Gaspard Monge, así como con otros matemáticos franceses. Lie descubrió su famosa transformación, que fue un importante descubrimiento geométrico inicial: fue un primer paso hacia su posterior desarrollo de la teoría de los grupos de Lie. La guerra franco-prusiana estalló el mismo año, y Lie fue arrestado como espía mientras caminaba por el campo. Pronto fue liberado y logró escapar de Francia antes del bloqueo de París. En 1871 regresó a Oslo, donde enseñó en la Private Latin School de Nissen. Obtuvo su doctorado en 1872.  

En este momento, Lie desarrolló la teoría de integración de las ecuaciones diferenciales parciales, que todavía se enseña como método clásico en textos matemáticos. Su trabajo inicial sobre geometría diferencial más tarde lo llevó a su importante trabajo sobre grupos de transformación y ecuaciones diferenciales. El grupo de transformación, más tarde conocido como grupo Lie, trajo herramientas algebraicas para abordar problemas geométricos y analíticos, y en particular resultó ser un poderoso enfoque de las ecuaciones diferenciales parciales. Aunque estas ideas no fueron aceptadas inicialmente, en gran parte debido al estilo engorroso de presentar ideas analíticas que estaba de moda en ese momento, su importancia para la matemática moderna no se puede sobreestimar. Completó su trabajo sobre los grupos de Lie en la década de 1870, pero su publicación llevó varias décadas de esfuerzo. 

En 1872 se creó una cátedra de matemática para Lie en la Universidad de Christiania. Además de la investigación mencionada sobre las transformaciones de contacto, estaba ocupado editando los trabajos recopilados de Niels Henrik Abel. Lie se casó con Anna Birch en 1874, y juntos criaron dos hijos y una hija. 

En Oslo Lie se mantuvo aislado de otros matemáticos; no tenía alumnos, y solo dos matemáticos, Klein y Emile Picard, prestaron atención a su trabajo. Friedrich Engel ayudó a Lie en la publicación de un extenso texto sobre grupos de transformación, que apareció dividido en tres partes entre 1888 y 1893. Su trabajo paralelo sobre la transformación de contacto y las ecuaciones diferenciales parciales con Felix Hausdorff no se completó. En 1886, Lie llegó a Leipzig sucediendo a Klein, y su situación de colaboración mejoró. 

La salud de Lie había sido excelente, y fue descrito como un hombre de corazón abierto y de gran estatura. Sin embargo, en 1889 fue golpeado con una enfermedad mental. Cuando reanudó el trabajo en 1890, su carácter había cambiado mucho, ahora era paranoico y beligerante. Finalmente, regresó a la Universidad de Christiania con el atractivo de una silla especial en 1898. Murió un año después, el 18 de febrero de 1899 en Oslo, por anemia. 

El trabajo de Lie revolucionó el estudio de la geometría y las ecuaciones diferenciales, ya que las técnicas teóricas y algebraicas de grupo ahora podían resolver problemas. El estudio de los grupos de Lie finalmente se convirtió en una disciplina propia. El aprecio por el trabajo de Lie creció gradualmente. Inicialmente, Engel e Issai Schur desarrollaron aún más sus ideas, y más tarde Picard, Killing, Élie-Joseph Cartan y Hermann Weyl continuaron el trabajo teórico de Lie en el siglo XX. A principios del siglo XX, se descubrieron las álgebras de Lie, y el trabajo original de Lie se ha generalizado de muchas maneras. Una razón para la popularidad perdurable de su pensamiento es la aplicación de los grupos de Lie a la física cuántica.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Hermann Grassmann hizo contribuciones sustanciales al álgebra y la geometría durante el siglo XIX. Sus ideas eran tan avanzadas que muchos de sus colegas no reconocieron sus méritos, pero las generaciones posteriores rápidamente gravitaron hacia el trabajo sumamente abstracto y hermoso de Grassmann. 

Hermann Günter Grassmann nació el 15 de abril de 1809 en Stettin, una ciudad de Prusia, aunque ahora se encuentra en Polonia. Grassmann enseñó en la escuela secundaria en Stettin durante la mayor parte de su vida; comenzó a enseñar en 1831 y continuó hasta su muerte, a excepción de un breve período (1834-1836) en Berlín. Mientras enseñaba, pudo dedicar parte de su tiempo a la investigación personal en álgebra y geometría. 

Grassmann es bien conocido por su desarrollo del cálculo vectorial, pero su trabajo más importante fue su Die lineale Ausdehnungslehre (Teoría de la extensión lineal)  de 1844. Este libro desarrolló un álgebra abstracta, un conjunto con ciertas reglas de operaciones aritméticas que definen cómo interactúan los símbolos en el conjunto, donde los símbolos eran objetos geométricos, como puntos, líneas y planos. Su álgebra dio ciertas reglas para las interacciones de estas cosas. Grassmann también estudió los subespacios de un espacio geométrico dado y desarrolló un cierto tipo de variedad algebraica que luego se llamó variedad grassmanniana. 

Grassmann también inventó el concepto de álgebra exterior, otro tipo de álgebra con un producto especial llamado producto exterior. Esta estructura abstracta estaba relacionada con los cuaterniones de Sir William Rowan Hamilton, y luego fue desarrollada por William Clifford en una herramienta que ha sido bastante útil en mecánica cuántica. El álgebra exterior es un importante objeto de estudio en la geometría diferencial moderna. Las ideas de Grassmann estaban bastante avanzadas para su época, y fueron aceptadas lentamente; esto llevó a la frustración de Grassmann, quien en sus últimos años se apartó de la matemática para estudiar sánscrito. (Su diccionario de sánscrito todavía se usa hoy en día.) Además de su trabajo matemático, Grassmann también contribuyó a la literatura en las áreas de la acústica, la  electricidad y la botánica. 

Grassmann murió el 26 de septiembre de 1877, en Stettin. Aunque decepcionado por la falta de aceptación de sus brillantes ideas, Grassmann alcanzó fama más adelante. A fines del siglo XIX, más geómetras comenzaron a descubrir su obra; Élie-Joseph Cartan se inspiró para estudiar las formas diferenciales, que son importantes para la geometría diferencial. Hoy, Grassmann es visto como un colaborador temprano en el campo en ciernes de la geometría algebraica.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »