Feeds:
Entradas
Comentarios

Posts Tagged ‘Enrico Betti’

Vito Volterra ayudó a extender las ideas del cálculo diferencial e integral de conjuntos a espacios de funciones. Su trabajo en biología también contribuyó a desarrollar conceptos matemáticos, como los vinculados a las ecuaciones diferenciales parciales, que influyeron en las relaciones depredador-presa. Es más famoso por su trabajo en ecuaciones integrales, produciendo las «ecuaciones integrales del tipo Volterra», que se aplicaron ampliamente a problemas mecánicos.

Vito Volterra nació el 3 de mayo de 1860 en Ancona (una ciudad en los Estados Pontificios de Italia) en una familia pobre. Su padre murió cuando Volterra tenía solo dos años y se desconoce su formación inicial. Se interesó por la matemática después de leer Geometry de Adrien-Marie Legendre a los 11 años, y dos años más tarde comenzó a estudiar el problema de los tres cuerpos, una pregunta destacada en la teoría de los sistemas dinámicos.

Volterra asistió a conferencias en Florencia y luego se matriculó en Pisa en 1878; allí estudió bajo la dirección de Enrico Betti, y obtuvo su doctorado en 1882 con una tesis sobre hidrodinámica. Betti murió al año siguiente, y Volterra lo sucedió como profesor de matemática en la Universidad de Pisa. Luego sirvió tanto en Turín como en Roma.

Volterra fue el primer matemático en concebir lo que más tarde se conocería como «funcional», una función de funciones a valor real. Un ejemplo de funcional (esta terminología fue introducida posteriormente por Jacques Hadamard) es la operación de integración, que produce un valor real para cada función de entrada. Volterra pudo extender los métodos integrales de Sir William Rowan Hamilton y Carl Jacobi para ecuaciones diferenciales a otros problemas de mecánica, y desarrolló un cálculo funcional completamente nuevo para realizar los cálculos necesarios. Hadamard, Maurice René Fréchet y otros pensadores más tarde desarrollaron esta idea original.

De 1892 a 1894 Volterra pasó a tratar ecuaciones diferenciales parciales, investigando la ecuación de la onda cilíndrica. Sus resultados más famosos fueron en el área de ecuaciones integrales, que relacionan las integrales de varias funciones desconocidas. Después de 1896, Volterra publicó varios artículos en esta área; estudió lo que se llegó a conocer como «ecuaciones integrales del tipo Volterra». Pudo aplicar su análisis funcional a estas ecuaciones integrales con considerable éxito.

A pesar de su edad, Volterra se unió a la fuerza aérea italiana durante la Primera Guerra Mundial, ayudando con el desarrollo de dirigibles en armas de guerra. Luego regresó a la Universidad de Roma. Promovió la colaboración científica y luego recurrió a las ecuaciones depredador-presa de biología, estudiando la curva logística. En 1922, el fascismo se extendió por Italia y Volterra luchó con vehemencia contra esta ola de opresión como miembro del parlamento italiano. En 1830 los fascistas tomaron el control y Volterra se vio obligado a huir de Italia. Pasó el resto de su vida en el extranjero en Francia y España. Sin embargo, regresó a Italia antes de su muerte el 11 de octubre de 1940 en Roma.

Volterra fue importante como fundador del análisis funcional, que ha sido una de las ramas más aplicadas de las matemáticas en el siglo XX. Las ecuaciones integrales se han empleado con éxito para resolver muchos problemas científicos, y el trabajo de Volterra produjo un gran avance en el conocimiento de estas ecuaciones.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncio publicitario

Read Full Post »

Pocos matemáticos pueden compararse con Bernhard Riemann en términos de creatividad y profundidad de conocimiento. No solo encontró la nueva disciplina de la geometría riemanniana que se volvería tan importante para la teoría de la relatividad general un siglo más tarde, sino que también avanzó significativamente en otros campos de la matemática, incluido el análisis complejo, la teoría de funciones elípticas, las ecuaciones diferenciales y la teoría de la integración y topología. Es quizás más famoso por descubrir la función zeta de Riemann, que es importante para la teoría analítica de números. Como las de muchos genios, las ideas de Riemann eran tan avanzadas que pocos podían aceptarlas inmediatamente; después de su temprana muerte, el impacto de su investigación comenzó a apreciarse.

Georg Friedrich Bernhard Riemann nació el 17 de septiembre de 1826 en Breselenz, Alemania. Su madre fue Charlotte Ebell, y su padre Friedrich Bernhard Riemann. Riemann mantuvo una estrecha relación con su padre, un ministro luterano, durante toda su vida. Fue el segundo de seis hijos. Su padre lo educó personalmente hasta que tenía 10 años, y en 1842 el niño ingresó en el Johanneum Gymnasium en Lüneburg. Era un buen alumno, pero aún no mostraba un talento extraordinario en la matemática. Aunque sus estudios principales fueron clásicos y teológicos, se interesó por la matemática después de devorar rápidamente un libro de teoría de números de Adrien-Marie Legendre.

En 1846, Riemann se matriculó en la Universidad de Göttingen, donde siguió estudiando matemática. Aunque Carl Friedrich Gauss enseñaba allí en ese momento, no reconoció el talento de Riemann, al igual que algunos de sus otros maestros. Al año siguiente, Riemann se trasladó a la Universidad de Berlín, donde pudo estudiar con Carl Jacobi y Peter Lejeune Dirichlet; este último fue especialmente influyente en Riemann, quien adoptó su enfoque intuitivo y no computacional para las ideas matemáticas. Gran parte del trabajo de Riemann carecía del rigor preciso común en ese momento: centró sus energías en desarrollar conceptos y marcos correctos para comprender la matemática. Durante este tiempo formuló los principios básicos de su teoría de variables complejas.

Riemann regresó a Göttingen en 1849 para un trabajo de doctorado, y presentó su tesis, dirigida bajo la supervisión de Gauss, en 1851. Este trabajo presenta los objetos geométricos que se conocieron como superficies de Riemann. Fue influenciado por ideas de la física y la topología, y aplicó estas técnicas en su análisis de estas superficies, basándose en la teoría más básica de las variables complejas de Augustin-Louis Cauchy. Algunos de sus resultados se probaron utilizando una técnica variacional conocida como principio de Dirichlet (Riemann atribuyó el método a Dirichlet, aunque Gauss y otros lo habían desarrollado anteriormente). Esta tesis fue sorprendente por su originalidad, incluso el soberano Gauss quedó impresionado.

Para su trabajo postdoctoral, Riemann comenzó a investigar la representación de funciones en términos de una base de funciones trigonométricas (análisis de Fourier); en el curso de su investigación, desarrolló una rigurosa teoría de la integración, construyendo lo que más tarde se conocería como la integral de Riemann de una función. Estaba trabajando en Göttingen, y Gauss le exigió que diera una conferencia sobre geometría para completar su beca; la conferencia de Riemann sobre geometría más tarde se hizo muy famosa, ya que estableció los principios básicos y las ideas claves detrás de la teoría de la geometría diferencial. Esta conferencia de 1854 desarrolló conceptos generales de espacio, dimensión, líneas rectas, métricas, ángulos y lugares tangentes para superficies curvas. El resultado de esta exposición notablemente original fue el establecimiento de la geometría diferencial como un campo importante de investigación matemática (hubo trabajos anteriores sobre geometría diferencial, pero Riemann plantó las ideas principales que continuarían guiando el tema a lo largo del próximo siglo), que luego resultó tener una aplicación notable a la teoría general de la relatividad: Albert Einstein, a principios del siglo XX, describió la fuerza de la gravedad como esencialmente una curvatura del espacio, y la teoría geométrica de Riemann fue la base matemática perfecta para esta importante nueva rama de la física.

Esta conferencia probó el concepto fundamental de espacio con una profundidad notable, y pocos científicos y matemáticos pudieron apreciar el genio extraordinario del pensamiento penetrante de Riemann; quizás solo Gauss fue capaz de comprender verdaderamente el significado del nuevo paradigma. Riemann luego pasó a la teoría de las ecuaciones diferenciales parciales, tema sobre el que dio un curso con poca asistencia. Obtuvo una cátedra en Göttingen en 1857, el mismo año en que publicó la teoría de las funciones abelianas. Este trabajo investiga más a fondo las propiedades topológicas de las superficies de Riemann, así como los llamados problemas de inversión. Aunque otros matemáticos, incluido Karl Weierstrass, trabajaban en esta área, el trabajo de Riemann fue tan amplio que se convirtió en un pensador destacado en esta rama de la matemática. Riemann utilizó nuevamente el principio de Dirichlet para sus resultados, y Weierstrass declaró que no era válido para las aplicaciones de Riemann. La búsqueda de una prueba alternativa durante las siguientes décadas condujo a varios otros desarrollos algebraicos fructíferos; David Hilbert finalmente dio la formulación correcta y la prueba de los resultados de Riemann a finales de siglo. Como resultado de la correcta crítica de Weierstrass, muchos matemáticos abandonaron las teorías desarrolladas por Riemann, quien sostuvo que eran ciertas.

En 1858, Riemann recibió la visita de Enrico Betti, quien importó las ideas topológicas de Riemann a su propio trabajo. El año siguiente murió Dirichlet, y Riemann lo reemplazó como presidente de matemática en Göttingen; también fue elegido para la Academia de Ciencias de Berlín a través de las fuertes recomendaciones de Ernst Eduard Kummer y Weierstrass. La siguiente área de investigación de Riemann fue la teoría de números: exploró la función zeta, ya definida por Leonhard Euler, extendiéndola primero al plano complejo. Esta función zeta da la suma de varias series infinitas y ya se sabía que estaba relacionada con el conjunto de números primos. El trabajo de Riemann amplió enormemente el conocimiento de esta función, así como sus aplicaciones; la famosa hipótesis de Riemann, que sigue sin resolverse hoy en día, establece que todas las raíces no triviales de la función zeta se encuentran en la línea en el plano complejo definida por los números complejos cuya parte real es igual a un medio. Esta extraña conjetura ha sido ampliamente verificada numéricamente, pero una prueba completa ha escapado a los esfuerzos concertados de cientos de matemáticos. La función zeta tiene varias aplicaciones para la teoría numérica analítica, como estimar el número de primos menores que un entero dado.

Riemann sufrió de mala salud durante toda su vida. Su constitución débil más tarde impediría su investigación y le quitaría la vida prematuramente. Se casó con Elise Koch en 1862, pero poco después contrajo un resfriado y luego desarrolló tuberculosis. Pasó gran parte de su tiempo en los próximos años en el extranjero, en Italia, con la esperanza de que el clima más suave alivie su enfermedad. Regresó a Göttingen en 1865, y su salud declinó rápidamente a partir de entonces; viajó a Italia en 1866 nuevamente por razones de salud, pero no se recuperó. Murió el 20 de julio de 1866 en Selasca, Italia.

Riemann fue fácilmente uno de los matemáticos más influyentes y creativos del siglo XIX y, de hecho, de toda la historia. Afectó de manera significativa la geometría y el análisis complejo sobre todo, proporcionando esencialmente el marco a través del cual se estudian estos temas hoy. Y las preguntas y los problemas profundos que abordó en el campo de la geometría son extremadamente relevantes para las concepciones modernas del universo físico. Su trabajo en teoría de números ha estimulado un esfuerzo de investigación sin igual: la investigación de la función zeta de Riemann debe ser uno de los campos de actividad matemática más concurridos. Gauss estaría de acuerdo en que Riemann fue sin duda uno de los mejores matemáticos que este mundo ha visto.

En Septiembre del año pasado (2018) ocurrió un hecho de gran trascendencia en Heidelberg Laureate Forum. El matemático Michael Atiyah (1929-2019) anunciaba haber demostrado finalmente la Hipótesis de Riemann. Su conferencia fue vista por decenas de miles de personas por internet y numerosos ciudadanos mostraron su entusiasmo en Twitter, alabando al octogenario experto: «Los héroes a veces no llevan capa».

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

La topología, el estudio de la forma de los conjuntos matemáticos, se convirtió en una disciplina cada vez más popular en el siglo XX. Nuevas herramientas potentes como la homología y la teoría de anillos algebraicos se aplicaron a problemas importantes, y se avanzó mucho en el proyecto de clasificación topológica. Heinz Hopf fue un jugador clave en estos desarrollos. 

Heinz Hopf nació en Breslau, Alemania, el 19 de noviembre de 1894. Estudió matemática en la universidad de su ciudad natal, pero la Primera Guerra Mundial interrumpió su carrera. Después de un largo período de servicio, Hopf pudo asistir a un curso de teoría de conjuntos en la Universidad de Breslau en 1917; quedó fascinado con el trabajo topológico de Luitzen Egbertus Jan Brouwer y realizó más estudios en Berlín. En 1925, Hopf recibió un doctorado en matemática. Más tarde recibió una beca para estudiar en la Universidad de Princeton en 1927. En 1931, Hopf fue nombrado catedrático de matemática en la Eidgenössische Technische Hochschule en Zurich, Suiza. 

Aunque Hopf publicó solo un pequeño número de artículos, como Fundamentalgruppe und Zweite Bettische Gruppe (Grupos Fundamentales y segundos grupos de Betti), tuvo una influencia tremenda en el campo de la topología, debido a la amplitud y originalidad de sus ideas. Se basó en los métodos de Brouwer, desarrollando los conceptos de grado de mapeo y clase de homotopía: estas fueron herramientas matemáticas que introdujeron la teoría de grupos algebraicos como ayuda en la clasificación de variedades continuas. Hopf tenía una excelente intuición geométrica, pero sus argumentos se volvieron cada vez más algebraicos bajo la influencia de Emmy Noether. 

Algunos de los trabajos más importantes de Hopf se centraron en mapeos de esferas de alta dimensión, campos vectoriales y teoremas de puntos fijos. Definió el homomorfismo inverso, que se convirtió en una poderosa herramienta en el estudio de variedades. En 1931 Hopf identificó un número infinito de relaciones entre la esfera tridimensional y la esfera bidimensional, e hizo conjeturas sobre el llamado mapa de fibra de Hopf. Después de la Segunda Guerra Mundial, las primeras investigaciones de Hopf en estas áreas se convirtieron en un próspero campo de estudio. 

En el área de los campos vectoriales, Hopf estudió formas bilineales, variedades casi complejas y la homología de las variedades de grupos. Su principal herramienta en estas investigaciones fue la homología, que se refiere a las clases de «incrustaciones» de objetos simples (como triángulos y tetraedros) en una variedad dada. Otro trabajo de Hopf en la década de 1940 condujo al desarrollo del álgebra cohomológica, un nuevo y vigoroso campo de la matemática pura. 

Además de todo este excelente trabajo en topología algebraica, Hopf también exploró la geometría diferencial. Por ejemplo, investigó superficies completas, la congruencia de superficies convexas, e isometrías; también escribió sobre la tangente de una curva plana cerrada. Heinz Hopf era enérgico y alegre, y daba conferencias claras y estimulantes. Con su esposa, Anja Hopf, con quien se casó en octubre de 1928, fue un generoso anfitrión para colegas y exiliados políticos. Durante la Segunda Guerra Mundial, proporcionó refugio a sus amigos alemanes en Suiza, donde estarían a salvo de la persecución nazi. Murió el 3 de junio de 1971, en Zollikon, Suiza. Obtuvo varios doctorados honorarios de instituciones como Princeton, Freiburg y Sorbonne, y fue presidente de la Unión Matemática Internacional de 1955 a 1958. 

Heinz Hopf tuvo una enorme influencia en el área de la topología: desarrolló la homología convirtiéndola en una de las herramientas más utilizadas de  la topología algebraica, y obtuvo varios resultados importantes, especialmente en el estudio de esferas de alta dimensión. Los orígenes de la cohomología se remontan a Hopf, al igual que el concepto de grupos de homotopías.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »