Feeds:
Entradas
Comentarios

Posts Tagged ‘Euclides’

Un cambio de paradigma importante en la intuición geométrica tuvo lugar en el siglo XIX, cuando Carl Friedrich Gauss, János Bolyai y Lobachevsky desarrollaron, independientemente, geometrías alternativas al espacio plano. Lobachevsky fue el primero en publicar este descubrimiento. Sus generalizaciones de la noción intuitiva de espacio han demostrado ser extremadamente relevantes dentro de la matemática (allanando el camino para la definición abstracta y el estudio de la geometría) y la física, a través del modelado del efecto de la gravedad en la forma del universo. 

Nikolai Lobachevsky nació el 2 de diciembre de 1792 en Gorki, Rusia. Su padre, Ivan Maksimovich, era empleado administrativo, y su madre se llamaba Praskovia Aleksandrovna Lobachevskaya. En 1800, la madre de Lobachevsky se trasladó, junto con Lobachevsky y sus dos hermanos, a Kazan. Allí los tres chicos se inscribieron en el Gymnasium con becas. En 1807 Lobachevsky ingresó a la Universidad de Kazan, donde estudió matemática y física, obteniendo su maestría en 1812. 

En 1814 Lobachevsky dio una conferencia sobre matemática y mecánica como adjunto y se convirtió en profesor el mismo año; fue promovido en 1822 y ocupó diversos cargos en la Universidad de Kazan, incluido el de decano del departamento de física y matemática, bibliotecario de la universidad, rector y asistente del fideicomisario del distrito de Kazan. Su primer trabajo importante, escrito en 1823, se llamó Geometriya (Geometría), y sus estudios geométricos básicos lo condujeron a sus investigaciones posteriores sobre geometría no euclidiana. Informó de sus primeros descubrimientos en 1826 y publicó estas ideas en 1829–1830. 

Lobachevsky intentó inicialmente probar el quinto postulado de Euclides de Alejandría, como muchos antes que él (incluyendo Claudio Ptolomeo, Thabit ibn Qurra, Abu Ali al-Haytham, Adrien-Marie Legendre y John Wallis) lo habían intentado y fracasado. Pronto recurrió a la construcción de una geometría más general que no requería el quinto postulado, que establece que dada una recta y un punto fuera de ella, existe una única recta a través del punto que es paralela a la recta dada. La geometría resultante, que Lobachevsky denominó “geometría imaginaria”, permitió la construcción de múltiples rectas paralelas distintas a través del punto dado. Desde aquí pudo deducir varias propiedades interesantes: la más importante es que la geometría era consistente(no había contradicción en sus reglas, por más que fueran intuitivas sus características). Curiosamente, la suma de los ángulos en un triángulo es menor que 180 grados; posteriormente, Lobachevsky intentó deducir la geometría del universo midiendo los ángulos de un vasto triángulo cósmico atravesado por estrellas distantes. Concluyó que, dentro de los márgenes del error de medición, los ángulos sumaban 180 grados y, por lo tanto, el universo es euclidiano. 

Lobachevsky produjo varios artículos más sobre este tema; dio tanto una definición axiomática como una constructiva de su “pangeometría”, que más tarde se conocería como geometría hiperbólica. Sus ideas no fueron aceptadas inicialmente en el extranjero, aunque fue promovido en Kazán y convertido en noble en 1837. Se casó en 1832 con una adinerada aristócrata, Lady Varvara Aleksivna Moisieva, y tuvieron siete hijos. 

Además de su importante trabajo geométrico, Lobachevsky contribuyó en álgebra, series infinitas y teoría de la integración. Sin embargo, este trabajo estaba condimentado por sus ideas geométricas y se relacionaba con su “geometría imaginaria”. Gauss apreció los esfuerzos de Lobachevsky, que eran similares a su propio trabajo sobre geometría no euclidiana, y ayudó a su elección a la Academia de Ciencias de Göttingen después de 1842. 

Lobachevsky, a pesar de su matrimonio ventajoso, experimentó dificultades financieras en sus últimos años, debido al costo de su familia numerosa y al mantenimiento de su patrimonio. Sus ojos se deterioraron con la edad hasta que quedó totalmente ciego. Murió el 24 de febrero de 1856, en Kazán. 

El reconocimiento del trabajo pionero de Lobachevsky llegó lentamente. Muchos matemáticos, como Arthur Cayley, no pudieron comprender su significado y lo denigraron. En la década de 1860, las obras de Bolyai y Lobachevsky ganaron cada vez más renombre entre los franceses, y Eugenio Beltrami más tarde dio una construcción de la geometría lobachevskiana en un círculo cerrado del plano. Después de 1870 Karl Weierstrass y Felix Klein se interesaron por el trabajo de Lobachevsky, y Klein finalmente formuló las diversas geometrías (elíptica, plana e hiperbólica) en términos de invariantes de transformaciones de grupo. Posteriormente se demostró que la geometría lobachevskiana era un caso especial de las geometrías de Cayley. Henri Poincaré, junto con Klein, se basó en las ideas de Bernhard Riemann y Lobachevsky. En el siglo XX se demostró que la geometría no euclidiana era relevante para la teoría general de la relatividad. Es intrigante que luego se demostró que el espacio del universo tiene curvatura variable, con la urdimbre y la trama de su tejido definidas por fuerzas gravitacionales. Esta realidad está modelada por la geometría de Lobachevsky.

 

 

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Anuncios

Read Full Post »

Leonardo da Vinci es una de las personas más famosas de la época medieval. Artista, ingeniero y científico, era diverso y profético. Hizo importantes contribuciones al arte, la anatomía, la tecnología, la mecánica, la geología y la matemática. 

Resultado de imagen para da vinci

Leonardo da Vinci nació el 15 de abril de 1452 en Empolia, Italia. Era el hijo ilegítimo de Piero da Vinci, un ciudadano florentino. Su madre era una niña campesina llamada Caterina. El padre de Leonardo pronto se casó con una respetable mujer italiana, Albiera di Giovanni Amadori. Leonardo recibió una educación rudimentaria, y mostró su talento para la música y el arte a una edad temprana. En 1467 fue aprendiz de Andrea del Verrocchio, con quien estudió pintura, escultura y mecánica. 

Leonardo completó algunas de sus primeras pinturas durante este tiempo, incluido el Bautismo de Cristo.

En 1482 partió para trabajar para el duque de Milán; en ese momento él ya era un experto en arquitectura, pintura y escultura, así como en ingeniería militar. Permaneció en Milán hasta 1499, tiempo durante el cual se interesó más en la física y la mecánica y en las propiedades de la luz. También aumentó su escasa educación matemática, estudiando latín y geometría al mismo tiempo. 

Leonardo formuló su teoría de la supremacía de la pintura sobre los principios matemáticos de la proporción y la perspectiva. Su interés en la proporción lo llevó a realizar más investigaciones en física y matemática. Algunos de sus primeros trabajos en matemática fueron bastante erróneos, ya que no tenía una comprensión adecuada del cálculo aritmético; un ejemplo es su afirmación de que la fracción 2/2 es la raíz cuadrada de 2, ya que afirma falsamente que 2/2 por 2/2 es 4/2. 

Sus otros proyectos durante el tiempo en Milán incluyen la física de la luz, la física de la visión y el problema del vuelo mecánico. Colaboró con el matemático Pacioli en la Divina proporción. Es probable que Leonardo haya leído los Elementos de Euclides de Alejandría antes de hacer los dibujos de este libro. Los cuadernos de Leonardo contienen pruebas de varias proposiciones en los Elementos, y es probable que su amigo Pacioli lo haya alentado y lo haya ayudado en su estudio de Euclides. 

Leonardo partió para Venecia después de que los franceses capturaron al duque de Milán, y más tarde regresó a Florencia. Sirvió brevemente con Cesare Borgia como ingeniero militar, y más tarde completó su famosa Mona Lisa.

De 1500 a 1506 realizó una investigación sobre anatomía humana y dedicó una mayor parte de su tiempo a la matemática y la mecánica. Después de completar su estudio de Euclides (Leonardo estaba especialmente interesado en el tratamiento de la proporción en el Libro X de los Elementos), comenzó su propia investigación sobre la equiparación. Estaba interesado principalmente en la cuadratura de las superficies curvilíneas (transformando estas regiones curvas en cuadrados con la misma área), aunque su método de prueba era a menudo mecánico más que estrictamente geométrico. Leonardo propuso varios métodos para cuadrar el círculo; estaba familiarizado con el método de Arquímedes  de Siracusa, pero rechazó la aproximación del número pi de este último por 22/7. Intentó mejorar la aproximación al inscribir un polígono de 96 lados en el círculo. 

Animado por su supuesto descubrimiento de la cuadratura del círculo el 30 de noviembre de 1504, realizó una investigación similar sobre duplicar cuadrados y cuadruplicar círculos. También se interesó en la duplicación del cubo (problema que ya había sido resuelto por Eratóstenes de Cirene hace siglos), insatisfecho por una solución reciente dada por Valla. Eventualmente, Leonardo concibió una solución que eliminó la necesidad de un aparato mecánico, y de ese modo pudo obtener aproximaciones extremadamente precisas para la raíz cúbica de dos. Sin embargo, no pudo proporcionar una prueba rigurosa de su método. 

Muchos de sus escritos matemáticos están incluidos en el Codex Atlanticus. Leonardo continuó investigando las propiedades de las superficies curvilíneas, como las porciones que quedan entre un círculo y un cuadrado o hexágono inscrito. También exploró la posibilidad del vuelo humano mediante el estudio de la anatomía de las aves, así como el movimiento del agua.

En 1506 regresó a Milán, donde sirvió bajo el mando del gobernador francés. En este último período de su vida, produjo algunos de sus mejores dibujos anatómicos, y sus esfuerzos científicos se extendieron a la hidrología, la geología, la meteorología, la biología y la fisiología humana. En todas estas áreas, sintió que la matemática tenía las claves del conocimiento y trató de formular leyes geométricas para estas disciplinas. Los franceses fueron expulsados ​​en 1513, y Leonardo se fue a Roma, esperando encontrar trabajo con el Papa León X; esto no se materializó, y volvió al servicio de Francia en 1516, trabajando con Francisco I. Sufrió un derrame cerebral en Amboise y murió el 2 de mayo de 1519.  

El enfoque de Leonardo para el estudio de la naturaleza no puede considerarse científico en el sentido moderno. Creía en la importancia de la investigación empírica, pero muchas de sus ideas eran puramente especulativas, sin un razonamiento sólido detrás de ellas. Por supuesto, muchos de sus conceptos fueron contribuciones brillantes también. En matemática, parece haber sido un aficionado. Ciertamente hizo algunos descubrimientos valiosos, y respetó profundamente el papel de la matemática en la investigación de la naturaleza. Pero muchas de sus obras tenían fallas profundas, y su enfoque de las pruebas era más típico de su identidad como artista. Además, sus trabajos matemáticos no han influido en el progreso posterior del pensamiento matemático. Su investigación geométrica sobre áreas curvilíneas desarrolló un aspecto del trabajo de Euclides, pero sus escritos no eran muy conocidos en su época y, por lo tanto, no ejercieron influencia sobre otros pensadores matemáticos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Al-Khwarizmi es un árabe importante en la historia de la matemática de Oriente Medio, ya que desempeñó un papel en la transmisión del conocimiento hindú a Arabia, desde donde se abrió camino a Europa. Su desarrollo del álgebra, aunque rudimentario, fue una base importante para matemáticos posteriores como al-Karaji

La vida de al-Khwarizmi es bastante oscura, pero probablemente nació poco antes del año 800 en Qutrubbull, un distrito entre los ríos Tigris y Éufrates cerca de Bagdad. Bajo el reinado del califa al-Mamun de 813 a 833, al-Khwarizmi se convirtió en miembro de la Casa de la Sabiduría, una academia de científicos en Bagdad. Al-Khwarizmi escribió libros que trataban sobre astronomía, álgebra, números hindúes, calendario judío, geografía e historia. 

Su Algebra fue un trabajo elemental, diseñado para proporcionar ayuda práctica con cálculos comunes utilizados en el comercio. La primera parte se ocupa de la solución de las ecuaciones algebraicas reales, mientras que la segunda y tercera secciones tratan la medición y aplicaciones. Al-Khwarizmi da seis tipos básicos de ecuaciones que incluyen ecuaciones lineales y cuadráticas en una variable. En esta etapa no hay noción de cero o número negativo, y una parte sustancial de las técnicas se refiere a la eliminación de cantidades negativas. De hecho, la palabra álgebra proviene de al-jabr, que significa “restauración”. Esto se refiere a la operación de agregar una cantidad positiva a ambos lados de una ecuación para eliminar una cantidad negativa. También se usa una operación similar llamada balanceo. El nombre completo del libro es The Compendious Book on Calculation by Completion and Balancing. Además de estas reglas básicas, el autor proporcionó información sobre cómo encontrar el área de varias figuras planas, como triángulos y círculos, así como el volumen de sólidos como el cono y la pirámide. 

Se cree que el Álgebra de Al-Khwarizmi es el primer trabajo árabe sobre el tema. Existe cierta controversia entre los estudiosos acerca de si obtuvo su información de fuentes griegas o hindúes. Su uso de diagramas indica que puede haber estado familiarizado con los Elementos de Euclides de Alejandría

El tratado de Al-Khwarizmi sobre los números hindúes también es bastante importante para la historia de la matemática, ya que es uno de los primeros trabajos en exponer el sistema numérico superior de los hindúes. Este es esencialmente el sistema moderno, que involucra 10 símbolos numéricos en un sistema posicional. Se les llama erróneamente “números arábigos”, ya que llegaron a los europeos a través de los árabes. Es probable que el sistema numérico hindú ya haya sido introducido a los árabes, pero al-Khwarizmi fue el primero en presentar una exposición sistemática. 

Además de estos trabajos matemáticos, al-Khwarizmi compuso un trabajo sobre astronomía que se derivó del conocimiento de los hindúes. Su Geografía fue una mejora con respecto a la de Ptolomeo, ya que incluía el mayor conocimiento de los árabes. 

Al-Khwarizmi murió en algún momento del siglo IX, quizás alrededor del año 850. El Álgebra de Al-Khwarizmi se utilizó ampliamente tanto en Arabia como en Europa después del siglo XII. Más importante, tal vez, es el impacto de su tratado sobre los números hindúes, que facilitó la explosión de la matemática europea después del siglo XII.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »