Feeds:
Entradas
Comentarios

Posts Tagged ‘Euclides’

Un problema pendiente de principios del siglo XIX, que más tarde resultaría en los desarrollos radicales de George Cantor, era determinar los cimientos del sistema de los números reales. No se habían comprendido aún propiedades como la divisibilidad infinita de los números reales y la densidad de los números racionales entre los irracionales, y como resultado no se entendía bien la teoría básica de las funciones, incluidos temas como la continuidad y la diferenciabilidad. Bernhard Bolzano, un activo defensor de fundamentos rigurosos para la ciencia y la matemática, hizo contribuciones significativas al conocimiento del análisis; su énfasis en la necesidad de un sistema preciso de números reales llevó a su desarrollo a manos de Richard Dedekind, y sus otras investigaciones también fueron precursoras de una aritmética de la lógica infinita y moderna. 

Bernardus Placidus Johann Nepumuk Bolzano fue el cuarto hijo de Caecilia Maurer y un comerciante de arte cívico llamado Bernhard Bolzano. Nació el 5 de octubre de 1781, en un antiguo distrito de Praga, uno de 12 niños; su padre era un inmigrante italiano con gran interés en el trabajo social que más tarde lo  llevó a establecer un orfanato. Como resultado de este ambiente, el joven Bolzano estuvo preocupado por la ética a lo largo de su vida, poseyendo una aguda sensibilidad a la injusticia. 

En 1791, Bolzano ingresó al Piarist Gymnasium. Estudió filosofía en la Universidad de Praga en 1796. Su interés por la matemática se vio estimulado por la lectura de Kästner, quien se preocupó por probar proposiciones que comúnmente se percibían como evidentes. Después de 1800, Bolzano pasó de la filosofía a la teología, aunque tenía continuas dudas sobre la verdad del cristianismo. En cambio, se volvió hacia el moralismo y se alejó de la religión sobrenatural, creyendo que la ética suprema residía en la acción que más beneficiaba a la sociedad. Sin embargo, reconcilió esta perspectiva personal con su compromiso con el catolicismo. 

El emperador de Austria había decidido establecer una cátedra de filosofía de la religión en todas las universidades, como parte del movimiento de restauración católico contra la Ilustración. Mucho del libre pensamiento se había extendido a través de Bohemia, y el emperador temía las consecuencias de tales ideas radicales en vista de la destrucción causada por la Revolución Francesa. Bolzano fue nombrado presidente de la Universidad de Praga en 1805, a pesar de sus propias simpatías ilustradas. Sus conferencias sobre religión contaban con una entusiasta audiencia, y exponía allí sus puntos de vista personales sin reservas.  

Bolzano fue respetado por sus colegas, y se convirtió en decano de la facultad de filosofía en 1818. Mientras tanto, Viena presentó una acusación contra él en 1816, ya que sus puntos de vista ilustrados lo habían hecho impopular con el gobierno conservador; fue despedido en 1819, se le prohibió publicar y se lo puso bajo supervisión policial. Bolzano tercamente se negó a arrepentirse de sus herejías, y la situación finalmente cesó en 1825 por la intercesión del líder nacionalista Dobrovsky. 

Aunque Bolzano estaba principalmente preocupado por cuestiones sociales y religiosas, ya se sentía atraído por la precisión metodológica de la matemática y la lógica. Esto condujo a algunas excelentes contribuciones al análisis matemático, aunque estos logros raramente tuvieron un reconocimiento significativo. Dos problemas no resueltos -la prueba del postulado de las paralelas de Euclides de Alejandría y la base del análisis a través de la clarificación de  los infinitesimales- reclamaron la atención de Bolzano. Su Betrachtungen über einige Gegenstände der Elementargeometrie de 1804 intentó describir una teoría de triángulos y paralelas a través de una teoría puramente lineal, que nunca llegó a concretarse completamente. Ignorante del trabajo de Nicolay Ivanovich Lobachevsky y János Bolyai sobre la geometría no euclidiana, Bolzano desarrolló una crítica metodológica de los Elementos de Euclides en su manuscrito “Anti-Euklid”. Por ejemplo, requirió una prueba de la afirmación de que cualquier curva cerrada divide el plano en dos porciones disjuntas; este resultado más tarde se conoció como el teorema de la curva de Jordan, probado por Camille Jordan. Parcialmente a través de las objeciones y preguntas planteadas por Bolzano, el campo de la matemática conocido como topología comenzó a existir a fines del siglo XIX. 

Su Rein analitischer Beweis de 1817 obtuvo importantes resultados relevantes para la base del análisis matemático, más tarde completados en su Theorie der Reellen Zahlen de 1832-1835. Muchos otros matemáticos, como Joseph-Louis LaGrange y Jean Le Rond d’Alembert, habían intentado liberar la matemática de la noción de infinitesimal introducida por Sir Isaac Newton y Gottfried Leibniz en el siglo XVII, pero Bolzano se encontró con el primer logro exitoso en Rein analtischer Beweis. Aquí da la definición de una función continua que todavía está en uso hoy en día, y obtiene un resultado de la propiedad de asumir valores intermedios. También introduce la noción de supremo de un conjunto de números reales que tienen una propiedad dada, un concepto que es una piedra angular en la teoría de los números reales. Bolzano también analiza el “criterio de convergencia de Cauchy”, por el cual una sucesión de funciones tiende a cierto límite si los miembros de la sucesión se acercan entre sí. 

Aunque las pruebas son incompletas, esto se debió a la inadecuación del  momento del concepto de número real. En su Functionenlehre presenta una teoría de funciones más completa, que incluye varios resultados redescubiertos más tarde por Karl Weierstrass en la segunda mitad del siglo XIX. Bolzano demostró que una función continua en un intervalo cerrado debe alcanzar un valor extremo, ahora llamado Teorema del valor extremo en cálculo; la demostración requiere el teorema de Bolzano-Weierstrass sobre los puntos de acumulación de sucesiones acotadas. Él distingue entre la continuidad y la propiedad de asumir valores intermedios como características más fuertes y más débiles, respectivamente. Desarrolla la conexión entre monotonía y continuidad, y da la construcción de la función de Bolzano, que era continua pero en ningún lugar diferenciable, significativamente anterior al propio ejemplo de Weierstrass. El Functionenlehre contenía muchos errores, incluida la falsa noción de que el límite de una sucesión de funciones continuas debe ser necesariamente continuo, y que la integración a largo plazo de una serie infinita siempre es posible. 

Su teoría de las cantidades se completó en Theorie der Reelen Zahlen, pero este manuscrito no se publicó y, por lo tanto, no pudo influir en el posterior desarrollo del análisis. Bolzano describe tales números reales como capaces de una aproximación arbitrariamente precisa por números racionales. Además, su Paradoxien des Unendlichen (Paradojas del infinito) contiene muchos intrigantes fragmentos de la teoría de conjuntos, y lleva el tema al límite de la aritmética cardinal. Bolzano observa que un conjunto infinito se puede poner en correspondencia uno a uno con un subconjunto propio, y que esto realmente caracteriza a los conjuntos infinitos. Sin embargo, él no da el siguiente paso en la definición de cardinales del infinito; Dedekind (1882) usaría más tarde esta propiedad de conjuntos infinitos para definir el infinito, y Cantor desarrollaría una clasificación de infinitos. 

Desde 1820 Bolzano trabajó en el tratado Wissenschaftslehre de 1837, que era una teoría de la ciencia basada en la lógica. Sus cuatro volúmenes trataban la prueba de la existencia de verdades abstractas, la teoría de ideas abstractas, la condición de la facultad humana del juicio, las reglas del pensamiento humano en la búsqueda de la verdad y las reglas para dividir las ciencias. Aunque este trabajo pasó desapercibido en su momento, existe una gran similitud con la lógica moderna, especialmente en las nociones de Bolzano de proposición abstracta, idea y derivabilidad. 

Desde 1823 Bolzano pasó sus veranos en la propiedad de su amigo Hoffmann en el sur de Bohemia. Luego vivió allí por más de una década. En 1842 regresó a Praga, donde continuó sus estudios matemáticos y filosóficos hasta su muerte el 18 de diciembre de 1848. Bolzano fue un importante matemático del siglo XIX, cuya búsqueda de la verdad llevó a un excelente trabajo sobre los cimientos de la recta numérica real. Su nombre se encuentra en muchas áreas del análisis, como el teorema de Bolzano-Weierstrass y la función de Bolzano; es considerado como uno de los fundadores de la teoría moderna del análisis real.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

Enrico Betti es conocido por sus contribuciones a la teoría de Galois (una teoría algebraica abstracta utilizada para resolver ecuaciones algebraicas, desarrollada por Evariste Galois) y a la teoría de las funciones elípticas. Su trabajo en el análisis del hiperespacio inspiró más tarde a Henri Poincaré en la fundación de la geometría algebraica. 

Betti nació el 21 de octubre de 1823 en Pistoia, Italia, y su padre murió cuando era muy joven. Como resultado, su madre supervisó su educación, y posteriormente se matriculó en la Universidad de Pisa, recibiendo un grado en ciencias físicas y matemática. Después se involucró en la guerra por la independencia italiana, participando como soldado en las batallas de Curtatone y Montanara. Su profesión posterior fue como profesor de matemática de secundaria en Pistoia, aunque simultáneamente continuó sus propias investigaciones en matemática pura.

Gran parte del trabajo de Betti era en el campo del álgebra. El trabajo de Evariste Galois, que recibió poco reconocimiento durante la breve vida de su autor, se resumió en gran medida en una carta personal de 1832 que posteriormente fue publicada por Joseph Liouville en 1846. Desde entonces, Betti promovió el trabajo de Galois sobre la solubilidad de las ecuaciones algebraicas mediante operaciones por radicales (la cuestión de determinar qué ecuaciones podrían tener sus soluciones expresadas en términos de radicales y números racionales). Conectando el trabajo de Galois con las investigaciones previas de Niels Henrik Abel y Paolo Ruffini, Betti superó la brecha entre los nuevos métodos del álgebra abstracta y los problemas clásicos (como el quíntico) tratados anteriormente. Muchos consideraban entonces que las labores de Galois eran irrelevantes y estériles, pero las elaboraciones de Betti en dos documentos de 1852 y 1855 constituyen un paso importante para revertir esas opiniones adversas; hoy en día la teoría de Galois es vista como un componente fructífero y encantador del álgebra abstracta.

También investigó la teoría de las funciones elípticas, un tema popular en el siglo XIX; Betti describió esta rama de la matemática relacionándola con la construcción de ciertas funciones trascendentales en 1861, y Karl Weierstrass desarrolló estas ideas en los años siguientes. Tomando otra mirada no-algebraica sobre el mismo tema, Betti investigó las funciones elípticas desde la perspectiva de la física matemática. Con la guía de Bernhard Riemann, con quien Betti se había reunido en Göttingen en 1858, Betti investigó los procedimientos utilizados en electricidad y en análisis matemático.

En 1865 Betti aceptó una cátedra en la Universidad de Pisa, que conservó por el resto de su vida. Más tarde se convirtió en rector de la universidad y director de la escuela de profesores en Pisa. Desde 1862 fue miembro del parlamento italiano, sirvió brevemente como subsecretario de Estado para la educación pública en 1874 y se convirtió en senador en 1884. Sin embargo, sus intereses principales no estaban en la política o la administración, sino en la investigación matemática pura; Betti sólo deseaba tener soledad para su propia reflexión intelectual y reuniones animadas con sus amigos más cercanos.

El trabajo de Betti en el campo de la física teórica condujo a una ley de reciprocidad en la teoría de la elasticidad, conocida como el teorema de Betti (1878). Primero aprendió los métodos de George Green para la integración de las ecuaciones de Pierre-Simon Laplace en la teoría de potenciales y utilizó esta metodología en el estudio de la elasticidad y el calor. También analizó el hiperespacio en 1871; Poincaré se inspiraría más tarde en Betti para ampliar estas investigaciones preliminares. Los números de Betti, acuñados por Poincaré, se utilizarían comúnmente como características mensurables de una variedad algebraica. 

Betti fue un excelente maestro, trayendo su pasión y su amplio conocimiento al aula, y fue un ferviente defensor del regreso a la educación clásica. Consideró los Elementos de Euclides de Alejandría como un texto modelo para la instrucción, y abogó firmemente por su regreso a las escuelas secundarias. Influyó en varias generaciones de estudiantes en Pisa, guiando a muchos hacia la búsqueda del conocimiento científico. Murió el 11 de agosto de 1892, en Pisa. 

El impacto de Betti en la matemática todavía se siente hoy. Su investigación temprana en topología algebraica fue fundamental, como lo atestigua la importancia duradera de los números de Betti. Tal vez aún más importante fue su desarrollo de la teoría de Galois, que se ha convertido en un gran componente de los estudios modernos en álgebra abstracta.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Isaac Barrow fue el primero en descubrir ciertos aspectos del cálculo diferencial. Hay una cierta controversia sobre esto, y también sobre la extensión de su influencia en Sir Isaac Newton, que fue su sucesor en Cambridge. Sin embargo, las conferencias de Barrow sobre geometría contienen algunos de los primeros teoremas del cálculo, y por esto es recordado.

Barrow nació en octubre de 1630 (la fecha exacta es desconocida), hijo de Thomas Barrow, un próspero drapeador de lino y fiel realista. Su madre, Anne, murió en el parto. Un rebelde en su juventud, Barrow más tarde se disciplinó y aprendió griego, latín, lógica y retórica. En 1643 ingresó en el Trinity College, donde permanecería durante 12 años. Barrow, como su padre, era un partidario del rey, pero en Trinity la atmósfera se hizo cada vez más anti-realista. Se ganó su grado B.A. en 1648, fue elegido fellow de la universidad en 1649, y recibió su grado M.A. en matemática en 1652. Con estas credenciales, ingresó a su posición final como conferenciante y examinador en la universidad.

Es probable que su próximo puesto hubiera sido una cátedra de griego, pero Barrow fue expulsado de su posición por el gobierno de Cromwell en 1655. Barrow vendió sus libros y emprendió una gira por Europa que duró cuatro años. Cuando regresó de sus viajes, Carlos II acababa de volver al poder; Barrow tomó órdenes sagradas y obtuvo así la cátedra Regius. En 1662 él también aceptó la cátedra Gresham de geometría en Londres, y el año siguiente fue designado como primer profesor Lucasiano de matemática en Cambridge. Durante los seis años siguientes, Barrow concentró sus esfuerzos en escribir las tres series de Lectiones, una colección de conferencias.

La educación de Barrow había sido bastante tradicional, centrada en Aristóteles y los pensadores del Renacimiento, y en algunos temas seguía siendo muy conservador. Pero estaba muy intrigado por el renacimiento del atomismo y la filosofía natural de René Descartes: en la tesis de su maestría estudió a Descartes en particular. Hacia 1652 había leído muchos comentarios de Euclides de Alejandría, así como autores griegos más avanzados como Arquímedes de Siracusa. Su Euclidis elementorum libri XV (los primeros principios de Euclides en 15 libros), escrito en 1654, fue diseñado como un texto de pregrado, haciendo hincapié en la estructura deductiva sobre el contenido. Más tarde produjo comentarios sobre Euclides, Arquímedes y Apolonio de Perga. 

Clic sobre la imagen para acceder al recurso

Aparentemente, la fama científica de Barrow se debió a sus Lectiones, aunque no han sobrevivido. La primera serie Lucasiana, Lectiones mathematicae -dada de 1664 a 1666- se ocupa de los fundamentos de la matemática desde un punto de vista griego. Barrow considera el estado ontológico de los objetos matemáticos, la naturaleza de la deducción, la magnitud espacial y la cantidad numérica, el infinito y el infinitesimal, la proporcionalidad y la inconmensurabilidad, así como las entidades continuas y discretas. Sus Lectiones geometricae fueron un estudio técnico de geometría superior.

En 1664 encontró un método para determinar la línea tangente a una curva, problema que debía ser resuelto completamente por el cálculo diferencial; su técnica implica la rotación y la traslación de líneas. Las conferencias posteriores de Barrow son una generalización de procedimientos de tangencia, cuadratura y rectificación compilados a partir de su lectura de Evangelista Torricelli, Descartes, Frans van Schooten, Johann Hudde, John Wallis, Christopher Wren, Pierre de Fermat, Christiaan Huygens, Blaise Pascal y James Gregory. El material de estas conferencias no fue totalmente original, basándose fuertemente en los autores anteriores, especialmente en Gregory, y las Lectiones geometricae de Barrow no fueron ampliamente leídas.

Barrow también contribuyó al campo de la óptica, aunque sus Lectiones opticae pronto fue eclipsado por la obra de Newton. La introducción describe un cuerpo lúcido, que consiste en “colecciones de partículas diminutas casi imposibles de concebir”, como la fuente de los rayos de luz; el color es una dilución de grosor. El trabajo se desarrolla a partir de seis axiomas, incluyendo la ley euclidiana de la reflexión y la ley seno de la refracción. Gran parte del material se toma de Abū ‘Alī al-Ḥasan ibn al-Ḥasan ibn al-Hayṯam, Johannes Kepler y Descartes, pero el método de Barrow para encontrar el punto de refracción en una interfaz plana es original.

Mucho se ha planteado la hipótesis de la relación entre Barrow y Newton; algunos dicen que Newton derivó muchas de sus ideas sobre el cálculo de Barrow, pero hay poca evidencia de esto. A finales de 1669 los dos colaboraron brevemente, pero no está claro si tuvieron alguna interacción antes de ese tiempo. En ese año Barrow había renunciado a su silla, siendo reemplazado por Newton, con el fin de convertirse en el Real Capellán de Londres, y en 1675 se convirtió en vicerrector de la universidad.

Barrow nunca se casó, contentándose con la vida de soltero. Su personalidad era contundente y sus sermones teológicos eran extremadamente lúcidos y perspicaces, aunque no fue un predicador popular. Barrow era también uno de los primeros miembros de la sociedad real, incorporada en 1662. Era pequeño pero fuerte, y gozó de buena salud; su muerte temprana el 4 de mayo de 1677 se debió a una sobredosis de drogas.

La contribución matemática de Barrow parece algo marginal comparada con la producción prodigiosa de su contemporáneo Newton. Sin embargo, él fue un matemático importante en su tiempo, ganando fama a través de su popular  Lectiones, y fue el primero en derivar ciertas proposiciones del cálculo diferencial.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »