Feeds:
Entradas
Comentarios

Posts Tagged ‘Friedrich Ludwig Gottlob Frege’

Uno de los temas más debatidos en la historia de la matemática fue la cuestión de la prioridad en el descubrimiento del cálculo infinitesimal. Sir Isaac Newton y Gottfried Leibniz hicieron descubrimientos notables en el cálculo diferencial, y los seguidores de cada una de estas personalidades fomentaron un feo argumento sobre a quién se le debía acreditar el descubrimiento original. Cualquiera que sea la verdad, no hay duda de que Leibniz fue uno de los más grandes matemáticos de su tiempo, lo que se manifiesta no solo por la amplitud y profundidad de sus ideas originales, sino también por su capacidad para organizar los pensamientos de los demás de manera más eficiente. 

Gottfried Wilhelm von Leibniz nació el 1 de julio de 1646 en Leipzig, Alemania, hijo de Friedrich Leibniz, profesor de la Universidad de Leipzig, y de Katherina Schmuck. La familia era de origen eslavo, pero había vivido en Alemania durante varias generaciones. Leibniz fue un estudiante precoz, y sus maestros inicialmente intentaron contener su curiosa naturaleza. Después de que su padre muriera en 1652, se le permitió el acceso a la biblioteca de éste. Así, Leibniz fue autodidacta, de modo que cuando ingresó en la Universidad de Leipzig a los 15 años ya dominaba los clásicos. Su voraz apetito por la lectura lo acompañó durante toda su vida, y Leibniz pudo digerir una gran variedad de temas académicos. 

Leipzig se mantenía fiel a la tradición aristotélica no científica, de modo que Leibniz estudió por primera vez geometría euclidiana en la Universidad de Jena, lugar al que asistió después de 1663. Completó su doctorado en Altdorf en 1666, y pronto entró al servicio de un noble del Sacro Imperio Romano. Leibniz inició una correspondencia con muchas sociedades científicas, y comenzó a trabajar en una máquina para calcular que finalmente se completó en 1674. En 1671 viajó a París en una misión diplomática diseñada para prevenir la invasión de Renania por parte del monarca francés. Este proyecto no tuvo éxito, pero mientras estaba en París Leibniz desarrolló una amistad de por vida con Christiaan Huygens

Durante estos años, Leibniz amplió su instrucción anterior en matemática, desarrollando reglas de cálculo para diferencias finitas. Las continuas negociaciones de paz lo llevaron a Londres en 1673, donde fue admitido en la Royal Society y se familiarizó con las obras de Isaac Barrow. En este momento, Leibniz recibió indicios del trabajo de Newton sobre el cálculo infinitesimal, y pronto desarrolló sus propias técnicas computacionales y su notación. En 1674, Leibniz efectuó la cuadratura aritmética del círculo. 

El anterior patrón de Leibniz había muerto, y en 1676 asumió una nueva posición en Hannover, actuando como bibliotecario e ingeniero. Unos años más tarde se convirtió en consejero de la corte y se ocupó activamente en una investigación genealógica para el duque. Mientras tanto, Leibniz había comenzado a investigar álgebra y había obtenido varios resultados importantes para 1675, como la determinación de funciones simétricas y un algoritmo para la solución de ecuaciones algebraicas de grado superior. Conjeturó que la suma de dos números complejos conjugados es siempre un número real. Abraham de Moivre más tarde demostró este resultado. Leibniz también investigó progresiones de números primos y series aritméticas. Aprendió de la trascendencia de las funciones logarítmicas y trigonométricas y sus propiedades básicas, e investigó algunos problemas de probabilidad. 

Pero su mayor descubrimiento se produjo a finales de 1675, cuando introdujo la noción de límite en el cálculo infinitesimal. Este método, y su correspondiente notación, facilitaron una mayor difusión y comprensión de la nueva matemática. Newton menospreció su trabajo, ya que no resolvió ningún problema nuevo; pero la fortaleza del sistema de Leibniz fue su claridad y abstracción de los principios generales del cálculo. Leibniz procedió a resolver varias ecuaciones diferenciales importantes con sus técnicas. Muchos de sus descubrimientos de este tiempo se escribieron solo como notas e ideas en cartas, y no se desarrollaron ni publicaron sistemáticamente hasta 1682. En los próximos años presentó algunos documentos al público que trataron la cuadratura aritmética, la ley de la refracción, integraciones algebraicas y cálculo diferencial. 

En 1687, Leibniz viajó por Alemania para continuar su investigación genealógica. También visitó Italia y finalmente completó su proyecto en 1690; sus esfuerzos ayudaron a elevar el ducado de Hannover a estado electoral en 1692. Leibniz atrajo la atención de la comunidad científica a través de su ataque a la dinámica cartesiana en 1686. De esta controversia, varias cuestiones vinculadas al tema fueron planteadas y resueltas por Leibniz, Huygens y Jakob Bernoulli, incluidos los famosos problemas de la catenaria (1691) y la braquistócrona (1697). Una característica de Leibniz fue que reveló solo sus resultados y no sus métodos. De hecho, a menudo escribía sus artículos apresuradamente. A pesar de algunos errores, su trabajo resultó notable por la originalidad de sus ideas, algunas de las cuales fueron precursoras del trabajo de Evariste Galois sobre la solubilidad de las ecuaciones. Leibniz definió el centro de curvatura, desarrolló el método de coeficientes indeterminados en la teoría de las ecuaciones diferenciales y construyó series de potencias para funciones exponenciales y trigonométricas. 

En los últimos años del siglo XVII, gran parte del tiempo de Leibniz estuvo abocado a la controversia con Newton sobre el descubrimiento del cálculo. Los seguidores de Newton sostenían que Leibniz había plagiado sus ideas directamente de Newton y Barrow. Leibniz se defendió a sí mismo en 1700, e hizo hincapié en que ya había publicado su material sobre cálculo diferencial en 1684. El feo debate público se extendió de un lado a otro, impulsado por consideraciones nacionalistas, hasta que la Royal Society realizó una investigación parcial, que falló a favor de Newton, en 1712. Este veredicto fue aceptado sin cuestionamientos durante aproximadamente 140 años. Ahora se piensa que Leibniz desarrolló sus métodos independientemente de Newton. 

Leibniz viajó a Berlín en 1700 y fundó la Academia de Berlín, convirtiéndose en presidente vitalicio. Trabajó para realizar ciertas reformas políticas y religiosas, y fue nombrado concejal de Rusia en 1712. Pasó los últimos años de su vida intentando completar la historia de la casa de Brunswick mientras estaba aquejado de gota. Murió el 14 de noviembre de 1716. Además de sus notables contribuciones a la matemática, Leibniz investigó sobre física, lógica y filosofía. Escribió sobre temas tan diversos como dogma religioso y movimiento planetario, y desarrolló un cálculo lógico que permitiría la certeza de las deducciones a través de un sistema algebraico. En este aspecto, Leibniz fue el antecesor de muchos otros lógicos formales, como George Boole y Friedrich Ludwig Gottlob Frege

Su mayor talento como matemático fue su capacidad para penetrar los pensamientos de otros científicos y presentarlos de una manera coherente, adecuada para el cálculo. La notación que desarrolló para el cálculo diferencial es el ejemplo por excelencia de este poder: percibió asiduamente que la noción de límite era crucial para el estudio del cálculo infinitesimal. Los detalles, para Leibniz, no eran tan importantes como los conceptos abstractos subyacentes. Su legado en matemática continúa hasta nuestros días.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Anuncios

Read Full Post »

Gottlob Frege realizó un trabajo sustancial en lógica matemática durante el siglo XIX; de hecho, es visto por muchos como el padre de la lógica matemática moderna. El lenguaje que creó para analizar rigurosamente la aritmética se desarrollaría luego en la sintaxis y la notación de la teoría de la demostración moderna. 

Gottlob Frege nació el 8 de noviembre de 1848 en Wismar, Alemania, hijo de Alexander Frege y Auguste Bialloblotzky. Su padre era director de una escuela secundaria para niñas en Wismar, y Gottlob asistió al Gymnasium allí. De 1869 a 1871 fue alumno en Jena, y después de este período se matriculó en la Universidad de Göttingen, donde tomó cursos de matemática, física, química y filosofía. Dos años más tarde obtuvo su doctorado en filosofía con la tesis Über eine geometrische Darstellung der imaginaren Gebilde in der Ebene (Sobre una representación geométrica de cosas imaginarias en el plano). Su disertación de 1874 se refería a ciertos grupos de funciones. En esta época, comenzó a trabajar en el proyecto de proporcionar una base rigurosa a la aritmética. Frege deseaba definir el número y la cantidad de una manera satisfactoria, y recurrió a la lógica como un vehículo apropiado.  

En este período de la historia, había poco en el camino acerca de un tratamiento coherente de la lógica matemática. Como Frege quería ser preciso en su desarrollo de la teoría de números, decidió construir un lenguaje de lógica para formular sus ideas. Las herramientas para analizar demostraciones matemáticas se publicaron en Begriffschrift en 1879, y algunas de las ideas de su disertación en Jena entraron en su concepto de cantidad. En el mismo año, fue nombrado profesor extraordinario en Jena, y fue nombrado profesor honorario en 1896. Su diligente trabajo hacia la construcción lógica de la aritmética a lo largo de los años dio lugar a su Grundgesetze der Arithmetik en dos volúmenes (Leyes básicas de la aritmética) ) (1893-1903). En 1902 Bertrand Russell señaló una contradicción en el sistema de la aritmética de Frege; este comentario resultó ser desastroso, ya que Frege no pudo encontrar ninguna forma de remediar el problema. De hecho, como demostraría el trabajo posterior de Kurt Gödel, cualquier esfuerzo para construir teorías de números completas y consistentes estaba condenado al fracaso. 

El Begriffschrift debe verse como un lenguaje formal, como un vehículo, para el pensamiento puro. Este lenguaje consistía en varios símbolos (como letras) que podían combinarse de acuerdo con ciertas reglas (la gramática) para formar enunciados. Al igual que con la aritmética, después de la cual se modeló el lenguaje de Frege, se podían realizar cálculos cuyo resultado sería un cálculo lógico en lugar de una cantidad numérica. La idea de un cálculo lógico se remonta al menos a Gottfried Leibniz, quien supuso que un día todo el debate filosófico podría reducirse a cálculos lógicos. El cálculo de Frege podía usarse para formalizar la noción de una demostración matemática, de modo que uno pudiera, esencialmente, calcular la conclusión.  

Los componentes básicos del cálculo de Frege son un símbolo de afirmación (representado por un trazo vertical), un símbolo condicional (por ejemplo, A implica B) y una regla de deducción que establece lo siguiente: si afirmamos A y A implica B, entonces podemos afirmar B. Frege también desarrolló la notación para la negación, y demostró que el “y” y el “o” podían expresarse en términos de los símbolos condicional y de negación. Además de estas nociones básicas, añadió una teoría de la cantidad, definiendo rigurosamente nociones tales como “para todo” y “existe”.

Hay una escuela de matemática llamada formalismo, cuyos partidarios creen que no hay un significado verdadero o inherente a la matemática, sino que la matemática es puramente un lenguaje formal con el cual otras ideas pueden expresarse, y la verdad matemática puede alcanzarse solo jugando de acuerdo a las reglas del juego. Frege no era un formalista y no estaba interesado en aplicar su sistema a las preguntas relacionadas con una agenda formalista. Irónicamente, su trabajo fue bastante adecuado como base para la lógica formal.

El trabajo de Frege Grundlagen der Arithmetik (Fundamentos de la aritmética) (1884) define la noción de número y se basa en el lenguaje introducido en Begriffschrift. Aquí hace una crítica a las teorías de números anteriores, señalando sus insuficiencias; él argumenta que la igualdad de número es un componente esencial de la noción de número. Grundgesetze incorpora y refina su trabajo anterior, incluidas las mejoras basadas en varios artículos. Muchas de estas ideas tuvieron una gran influencia en la discusión filosófica subsiguiente, en particular influyendo en la filosofía de Wittgenstein.

Después de 1903, la potencia del pensamiento de Frege estaba en declive; parecía incapaz de mantenerse al día con una cultura matemática cada vez más moderna y extraña. En este último período, gastó su energía reaccionando contra varios nuevos desarrollos en matemática, y especialmente entró en conflicto con David Hilbert y su programa para la axiomatización de la matemática. En 1917 Frege se retiró, y después de esto produjo Logische Untersuchungen (Investigaciones lógicas) como una extensión del trabajo anterior. Murió en Bad Kleinen, Alemania, el 26 de julio de 1925.

Frege es principalmente recordado por su trabajo en lógica matemática, que condujo a la teoría moderna de la demostración. Otros grandes lógicos como Russell y Gödel continuaron su trabajo. Aunque el esfuerzo de Frege para construir una teoría de números completa y consistente estaba condenado al fracaso, las ideas que formuló en el curso de su investigación influyeron mucho en las generaciones posteriores de matemáticos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

El descubrimiento de Bertrand Russell de una contradicción oculta en el intento de Friedrich Frege de formalizar la teoría de conjuntos hizo que algunos matemáticos se preguntaran cómo podía asegurarse de que no existían otras contradicciones. El programa de Hilbert, llamado formalismo, debía concentrarse en el lenguaje formal de la matemática y estudiar su sintaxis. En particular, la consistencia de la matemática, que puede ser tomada, por ejemplo, como la afirmación metamatemática de que la afirmación matemática 0 = 1 no es demostrable, debía ser demostrable dentro de la sintaxis de la matemática. Este proyecto de formalización sólo tenía sentido si la sintaxis de la matemática era consistente, pues de lo contrario toda afirmación sintáctica sería demostrable, incluso aquella que afirma la consistencia de la matemática.

Desafortunadamente, una consecuencia del teorema de incompletitud de Gödel es que la consistencia de la matemática puede ser probada solamente en un lenguaje que es más fuerte que el lenguaje de la matemática misma. Sin embargo, el formalismo no está muerto -de hecho, la mayoría de los matemáticos puros son formalistas tácitos- pero el intento ingenuo de probar la consistencia de la matemática en un sistema más débil tuvo que ser abandonado.

Aunque nadie, excepto un intuicionista extremista, negará la importancia del lenguaje de la matemática, la mayoría de los matemáticos son también filosóficos realistas que creen que las palabras de este lenguaje denotan entidades en el mundo real. Siguiendo al matemático suizo Paul Bernays (1888-1977), esta posición también se llama platonismo, ya que Platón creía que las entidades matemáticas realmente existen.

Paul Isaac Bernays

 

Read Full Post »

Older Posts »