Feeds:
Entradas
Comentarios

Posts Tagged ‘Friedrich Ludwig Gottlob Frege’

Los matemáticos griegos clásicos rehuyeron el estudio del infinito, tanto lo infinitamente grande como lo infinitamente pequeño (lo infinitesimal). Los infinitesimales son la piedra angular del cálculo, y muchos griegos, como Arquímedes de Siracusa, dieron los primeros pasos vacilantes hacia un descubrimiento completo del cálculo. Sin embargo, la mayoría rechazó la noción de cantidades infinitamente divisibles, como un continuo, y esta reacción se debió en gran parte a las paradojas de Zenón.

Zenón de Elea nació aproximadamente en el año 490 a.C. en Elea, Italia. Él es de ascendencia griega a pesar de su nacimiento en Italia, y es considerado en la historia miembro del grupo de filósofos griegos. Existe muy poca información confiable sobre su vida, pero se dice que su padre era Telautagoras. Zenón finalmente estudió en la escuela de filosofía de Elea, donde conoció a su maestro Parménides. La escuela eleática, fundada por Parménides, enseñó el monismo, el concepto de que todo es uno. Esta filosofía influyó en Zenón para formular varias paradojas que desafiaban los conceptos de divisibilidad infinita.

Platón afirma que Zenón y Parménides viajaron a Atenas en el 450 a.C., donde se encontraron con el joven Sócrates y discutieron filosofía con él. Antes de viajar a Atenas, Zenón ya había adquirido cierta fama a través de la publicación de un libro (que no ha sobrevivido) que contenía 40 paradojas. Estas paradojas forman una disección profundamente estimulante del concepto del continuo, perturbando así las cómodas nociones de cosas comunes como el movimiento, el tiempo y el espacio. Una de las suposiciones de Zenón es la divisibilidad: si una magnitud se puede dividir en dos, entonces se puede dividir para siempre. El trabajo de Richard Dedekind luego establecería esta propiedad de continuo para los números reales. Zenón también asumió que no existe ningún objeto de magnitud cero (no lo expresó de esta manera, ya que los griegos no tenían el cero).

En la paradoja llamada «La dicotomía», Zenón afirma que para atravesar una distancia, primero es necesario atravesar la mitad de esa distancia; pero para llegar a la mitad, primero se requiere ir un cuarto del camino. Continuando con este razonamiento indefinidamente, Zenón concluye que comenzar es imposible y que, por lo tanto, el movimiento es imposible. Esta paradoja generalmente se resuelve sumando la serie geométrica de potencias recíprocas de dos. En «La flecha», Zenón declara que el movimiento es imposible, porque (suponiendo que la instancia actual de tiempo «ahora» es indivisible) si una flecha se mueve cierta distancia en un instante de tiempo indivisible, entonces se movió la mitad de esa distancia en la mitad del tiempo, lo que resulta en una división del instante. Esto puede resolverse permitiendo que el tiempo sea un continuo, infinitamente divisible.

La paradoja más famosa de Zenón es la de Aquiles: establece que se ejecuta una carrera entre el héroe griego Aquiles y una tortuga, donde la lenta tortuga comienza con una ventaja. Después de un tiempo, Aquiles alcanza la mitad de la distancia intermedia. Pero la tortuga ha seguido su camino; Aquiles luego corre la mitad de la distancia restante, pero nuevamente la tortuga ha avanzado más. ¡Llevando este argumento hasta el infinito, Zenón concluye que Aquiles nunca puede ponerse al día! Esto también se puede resolver configurando una serie geométrica adecuada. Sin embargo, las resoluciones de estas paradojas se basan en ciertas nociones de infinito y propiedades del continuo. La estructura matemática detrás de estos conceptos no se desarrolló hasta muchos siglos después. Sir Isaac Newton, Gottfried Leibniz y Blaise Pascal sentaron las bases modernas del cálculo. A finales del siglo XIX, Georg Cantor, Friedrich Ludwig Gottlob Frege y Bertrand Arthur William Russell realizaron trabajos más avanzados sobre el continuo, así como las propiedades básicas de los números reales, entre otros. Por lo tanto, la influencia de Zenón fue de gran alcance, ya que hizo algunas preguntas muy profundas sobre el tiempo, el espacio y el movimiento.

Zenón murió en algún momento alrededor del año 425 a.C., y una fuente cuestionable relata que fue ejecutado después de un intento fallido de eliminar a un tirano de Elea. Aunque era filósofo, las ideas de Zenón provocaron una revolución matemática milenios después, ya que sus paradojas apuntaban a la necesidad de proporcionar una base rigurosa a los conceptos intuitivos del espacio y el tiempo. Sus paradojas sobre el movimiento demostraron las dificultades de considerar la velocidad como una distancia dividida por el tiempo, ya que esta relación parece ser cero dividida por cero cuando el tiempo transcurrido de viaje se reduce a cero; solo con el descubrimiento de límites e infinitesimales en la disciplina del cálculo diferencial se resolvió este enigma. Además de proporcionar una gran cantidad de obstáculos mentales para los intelectuales posteriores, Zenón también sirvió para inhibir el crecimiento de las matemáticas griegas para abarcar el infinito; por lo tanto, fue una influencia retardadora clásica, pero milenios más tarde se convirtió en un impulso para el desarrollo matemático.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncio publicitario

Read Full Post »

Bertrand Russell fue una de las personalidades matemáticas más coloridas del siglo XX, y se encuentra entre los lógicos más importantes de la era moderna. Creía en el potencial de que toda la matemática se redujera a la lógica y ejerció mucho esfuerzo para validar este paradigma. Russell también fue un activo filósofo y revolucionario social, aplicando sus ideas lógicas a la ciencia, la ética y la religión.

Resultado de imagen para russell

Bertrand Russell nació el 18 de mayo de 1872 en Ravenscroft, Gales. Era nieto de lord John Russell. Su madre y su padre murieron en 1874 y 1876, respectivamente, por lo que sus abuelos lo criaron. Este abuelo había servido dos veces como primer ministro bajo la reina Victoria, pero murió en 1878 y su abuela continuó con la educación del niño. Recibió educación privada al principio, y luego fue instruido en el Trinity College, en Cambridge, donde obtuvo los primeros logros en la matemática.

Russell se convirtió en académico, y finalmente fue elegido miembro de la Royal Society en 1908. Pasó sus primeros años en su programa centrado en la lógica, creyendo que toda la matemática podía reducirse a afirmaciones lógicas. En este sentido, era seguidor de Friedrich Ludwig Gottlob Frege, quien tenía una filosofía similar. El trabajo de Russell de 1910 sobre los Principia Mathematica, escrito junto con Alfred North Whitehead, estableció que las pruebas matemáticas podrían reducirse a pruebas lógicas. Los primeros volúmenes de este trabajo trataron sobre teoría de conjuntos, aritmética y lateoría de la medida; un cuarto volumen, sobre geometría, no fue completado. Parte de este enfoque, inspirado en las ideas de Frege, fue expresar los números y otros objetos matemáticos como conjuntos de clases que comparten una propiedad común. Este ambicioso proyecto perdió fuerza en los últimos años, probablemente debido a las tendencias filosóficas que se alejan del logicismo.

Antes de los Principia, Russell adquirió fama a través de la construcción de la llamada paradoja de Russell. Formó el conjunto (conjunto A) de todos los conjuntos que tienen la propiedad de que no son miembros de sí mismos. Luego uno hace la pregunta: ¿Es A (visto como un elemento) un miembro del conjunto A? Esto no se puede resolver como verdadero o falso, ya que cualquiera de las respuestas conduce a una contradicción. Esto demostró el problema fundamental de tomar colecciones de conjuntos y suponer que dicha colección es en sí misma un conjunto. Kurt Gödel utilizará posteriormente este concepto de autorreferencia para producir sus teoremas de incompletitud. 

La solución de Russell a la paradoja fue desarrollar su teoría de tipos, principalmente desarrollada en su lógica matemática de 1908, basada en la teoría de tipos. En esto Russell describió una jerarquía de clases para la cual la idea de conjunto está especialmente definida en cada nivel. Otras resoluciones a la paradoja han resultado del debilitamiento del poder del axioma básico de comprensión formulado por George Cantor, que establece que siempre se pueden reunir objetos que comparten una propiedad común en un conjunto. La consecuencia inmediata de la paradoja fue poner en duda el programa lógico propuesto por David Hilbert, que buscaba establecer rigurosamente los fundamentos de la lógica matemática y la teoría de conjuntos. Parecía que incluso el concepto intuitivo de conjunto se proyectaba en la sombra.

Además de estas importantes contribuciones a la lógica, Russell también fue famoso por su «filosofía analítica», que intentaba plantear cuestiones filosóficas en el riguroso marco de la lógica matemática. Por supuesto, este enfoque computacional de la filosofía tiene una larga historia, que se remonta a René Descartes y otros matemáticos.

La vida personal y pública de Russell interfirió con el avance de su carrera. Fue declarado culpable de actividad contra la guerra en 1916, y esto resultó en su despido del Trinity College. Dos años más tarde fue nuevamente condenado y sometido a una breve pena de prisión. Durante su encarcelamiento, escribió su famosa Introducción a la Filosofía Matemática (1919). Tropezó con cuatro matrimonios que estuvieron plagados de asuntos extra matrimoniales, e incluso fue despedido de un puesto de profesor en el City College de Nueva York en 1940 después de que un juez dictaminó que era moralmente incapaz. Se postuló (pero no fue elegido) para el Parlamento tres veces; se convirtió en Earl Russell en 1931 después de la muerte de su hermano. Abrió una escuela experimental con su segunda esposa a finales de los años veinte. Sus sentimientos contra la guerra ganaron una mejor aceptación en las décadas de 1950 y 1960, cuando fue reconocido como líder en el movimiento antinuclear. El manifiesto de Russell-Einstein de 1955 exigía el abandono de las armas nucleares. En 1957, Russell organizó la Conferencia Pugwash, una convención de científicos contra las armas nucleares, y se convirtió en presidente de la Campaña por el Desarme Nuclear en 1958. Russell fue arrestado nuevamente en 1961 por protestas nucleares. 

Después de una vida llena de matemática, filosofía y protesta pública, Russell murió el 2 de febrero de 1970 en Penrhyndeudraeth, Gales. Fue reconocido por sus extensas contribuciones a la literatura y la ciencia, ganando el Premio Nobel de literatura en 1950. Es mejor conocido por su paradoja y su posterior resolución a través de la teoría de tipos, pero también a través de sus investigaciones posteriores sobre el logicismo y el problema de la incompletitud estudiado por Gödel. El pensamiento de Russell ha sido enormemente influyente en la lógica, la matemática y la filosofía, así como en la ética, la religión y la responsabilidad social. 

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Uno de los temas más debatidos en la historia de la matemática fue la cuestión de la prioridad en el descubrimiento del cálculo infinitesimal. Sir Isaac Newton y Gottfried Leibniz hicieron descubrimientos notables en el cálculo diferencial, y los seguidores de cada una de estas personalidades fomentaron un feo argumento sobre a quién se le debía acreditar el descubrimiento original. Cualquiera que sea la verdad, no hay duda de que Leibniz fue uno de los más grandes matemáticos de su tiempo, lo que se manifiesta no solo por la amplitud y profundidad de sus ideas originales, sino también por su capacidad para organizar los pensamientos de los demás de manera más eficiente. 

Gottfried Wilhelm von Leibniz nació el 1 de julio de 1646 en Leipzig, Alemania, hijo de Friedrich Leibniz, profesor de la Universidad de Leipzig, y de Katherina Schmuck. La familia era de origen eslavo, pero había vivido en Alemania durante varias generaciones. Leibniz fue un estudiante precoz, y sus maestros inicialmente intentaron contener su curiosa naturaleza. Después de que su padre muriera en 1652, se le permitió el acceso a la biblioteca de éste. Así, Leibniz fue autodidacta, de modo que cuando ingresó en la Universidad de Leipzig a los 15 años ya dominaba los clásicos. Su voraz apetito por la lectura lo acompañó durante toda su vida, y Leibniz pudo digerir una gran variedad de temas académicos. 

Leipzig se mantenía fiel a la tradición aristotélica no científica, de modo que Leibniz estudió por primera vez geometría euclidiana en la Universidad de Jena, lugar al que asistió después de 1663. Completó su doctorado en Altdorf en 1666, y pronto entró al servicio de un noble del Sacro Imperio Romano. Leibniz inició una correspondencia con muchas sociedades científicas, y comenzó a trabajar en una máquina para calcular que finalmente se completó en 1674. En 1671 viajó a París en una misión diplomática diseñada para prevenir la invasión de Renania por parte del monarca francés. Este proyecto no tuvo éxito, pero mientras estaba en París Leibniz desarrolló una amistad de por vida con Christiaan Huygens

Durante estos años, Leibniz amplió su instrucción anterior en matemática, desarrollando reglas de cálculo para diferencias finitas. Las continuas negociaciones de paz lo llevaron a Londres en 1673, donde fue admitido en la Royal Society y se familiarizó con las obras de Isaac Barrow. En este momento, Leibniz recibió indicios del trabajo de Newton sobre el cálculo infinitesimal, y pronto desarrolló sus propias técnicas computacionales y su notación. En 1674, Leibniz efectuó la cuadratura aritmética del círculo. 

El anterior patrón de Leibniz había muerto, y en 1676 asumió una nueva posición en Hannover, actuando como bibliotecario e ingeniero. Unos años más tarde se convirtió en consejero de la corte y se ocupó activamente en una investigación genealógica para el duque. Mientras tanto, Leibniz había comenzado a investigar álgebra y había obtenido varios resultados importantes para 1675, como la determinación de funciones simétricas y un algoritmo para la solución de ecuaciones algebraicas de grado superior. Conjeturó que la suma de dos números complejos conjugados es siempre un número real. Abraham de Moivre más tarde demostró este resultado. Leibniz también investigó progresiones de números primos y series aritméticas. Aprendió de la trascendencia de las funciones logarítmicas y trigonométricas y sus propiedades básicas, e investigó algunos problemas de probabilidad. 

Pero su mayor descubrimiento se produjo a finales de 1675, cuando introdujo la noción de límite en el cálculo infinitesimal. Este método, y su correspondiente notación, facilitaron una mayor difusión y comprensión de la nueva matemática. Newton menospreció su trabajo, ya que no resolvió ningún problema nuevo; pero la fortaleza del sistema de Leibniz fue su claridad y abstracción de los principios generales del cálculo. Leibniz procedió a resolver varias ecuaciones diferenciales importantes con sus técnicas. Muchos de sus descubrimientos de este tiempo se escribieron solo como notas e ideas en cartas, y no se desarrollaron ni publicaron sistemáticamente hasta 1682. En los próximos años presentó algunos documentos al público que trataron la cuadratura aritmética, la ley de la refracción, integraciones algebraicas y cálculo diferencial. 

En 1687, Leibniz viajó por Alemania para continuar su investigación genealógica. También visitó Italia y finalmente completó su proyecto en 1690; sus esfuerzos ayudaron a elevar el ducado de Hannover a estado electoral en 1692. Leibniz atrajo la atención de la comunidad científica a través de su ataque a la dinámica cartesiana en 1686. De esta controversia, varias cuestiones vinculadas al tema fueron planteadas y resueltas por Leibniz, Huygens y Jakob Bernoulli, incluidos los famosos problemas de la catenaria (1691) y la braquistócrona (1697). Una característica de Leibniz fue que reveló solo sus resultados y no sus métodos. De hecho, a menudo escribía sus artículos apresuradamente. A pesar de algunos errores, su trabajo resultó notable por la originalidad de sus ideas, algunas de las cuales fueron precursoras del trabajo de Evariste Galois sobre la solubilidad de las ecuaciones. Leibniz definió el centro de curvatura, desarrolló el método de coeficientes indeterminados en la teoría de las ecuaciones diferenciales y construyó series de potencias para funciones exponenciales y trigonométricas. 

En los últimos años del siglo XVII, gran parte del tiempo de Leibniz estuvo abocado a la controversia con Newton sobre el descubrimiento del cálculo. Los seguidores de Newton sostenían que Leibniz había plagiado sus ideas directamente de Newton y Barrow. Leibniz se defendió a sí mismo en 1700, e hizo hincapié en que ya había publicado su material sobre cálculo diferencial en 1684. El feo debate público se extendió de un lado a otro, impulsado por consideraciones nacionalistas, hasta que la Royal Society realizó una investigación parcial, que falló a favor de Newton, en 1712. Este veredicto fue aceptado sin cuestionamientos durante aproximadamente 140 años. Ahora se piensa que Leibniz desarrolló sus métodos independientemente de Newton. 

Leibniz viajó a Berlín en 1700 y fundó la Academia de Berlín, convirtiéndose en presidente vitalicio. Trabajó para realizar ciertas reformas políticas y religiosas, y fue nombrado concejal de Rusia en 1712. Pasó los últimos años de su vida intentando completar la historia de la casa de Brunswick mientras estaba aquejado de gota. Murió el 14 de noviembre de 1716. Además de sus notables contribuciones a la matemática, Leibniz investigó sobre física, lógica y filosofía. Escribió sobre temas tan diversos como dogma religioso y movimiento planetario, y desarrolló un cálculo lógico que permitiría la certeza de las deducciones a través de un sistema algebraico. En este aspecto, Leibniz fue el antecesor de muchos otros lógicos formales, como George Boole y Friedrich Ludwig Gottlob Frege

Su mayor talento como matemático fue su capacidad para penetrar los pensamientos de otros científicos y presentarlos de una manera coherente, adecuada para el cálculo. La notación que desarrolló para el cálculo diferencial es el ejemplo por excelencia de este poder: percibió asiduamente que la noción de límite era crucial para el estudio del cálculo infinitesimal. Los detalles, para Leibniz, no eran tan importantes como los conceptos abstractos subyacentes. Su legado en matemática continúa hasta nuestros días.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Older Posts »