Feeds:
Entradas
Comentarios

Posts Tagged ‘George Cantor’

Karl Weierstrass ha sido descrito como el padre del análisis moderno. De hecho, sus rigurosos estándares de rigor se han incorporado a la disciplina moderna del análisis, y muchos de los métodos y temas se deben a él. Weierstrass también hizo contribuciones fundamentales al análisis complejo y la teoría de las funciones elípticas.

Karl Theodor Wilhelm Weierstrass nació el 31 de octubre de 1815 en Ostenfelde, Alemania. Su padre, Wilhelm Weierstrass, era un funcionario público altamente educado. La madre de Weierstrass se llamaba Theodora Vonderforst, y Weierstrass era el mayor de cuatro hijos. Cuando Weierstrass tenía ocho años su padre se convirtió en inspector de impuestos, lo que implicaba una constante reubicación. En 1827 murió su madre.

La familia se estableció en 1829 cuando el padre de Weierstrass consiguió un puesto más permanente en Paderborn, y Weierstrass asistió a la escuela secundaria local. Allí se destacó en matemática por encima de todas las materias, y desarrolló una facilidad inusual y amor por esta disciplina. Ya estaba leyendo el famoso Journal de Crelle en 1834 cuando ingresó a un programa de finanzas en la Universidad de Bonn. La carrera de finanzas no era elección de Weierstrass sino de su padre; en rebeldía y con espíritu de aflicción Weierstrass desperdició sus años universitarios con exceso de alcohol y mucho tiempo de dedicación a la esgrima. Aunque no asistía a la mayoría de sus clases, Weierstrass continuó con sus clases privadas.

En 1840, Weierstrass aprobó sus exámenes con excelentes resultados, habiendo demostrado una cierta derivación de Niels Henrik Abel a partir de una ecuación diferencial; su examinador pensó que la prueba era digna de publicación. Weierstrass pasó a enseñar en la escuela secundaria de Münster, y escribió tres artículos entre 1841 y 1842 sobre variables complejas. En estos documentos reformuló el concepto de función analítica en términos de series de potencias convergentes, en oposición al típico enfoque a través de la diferenciación. Mientras tanto, enseñó una variedad de temas, como historia, geografía e incluso gimnasia, y se aburrió por completo. La carga de trabajo era bastante pesada, porque realizaba investigaciones sobre matemática teórica en cada momento libre. Este ajetreo puede haber causado sus problemas de salud posteriores, que comenzaron en 1850: sufrió ataques de mareos, seguidos de náuseas.

Weierstrass trabajó en Brauensberg desde 1848, pero después de la publicación en 1854 de su Toward the Theory of Abelian Functions, que fue ampliamente aclamado por los matemáticos, recibió varias ofertas de universidades destacadas. Este artículo esbozaba la representación de funciones abelianas como series de potencias convergentes, y la Universidad de Königsberg le confirió un doctorado honorario en 1854. Ernst Eduard Kummer intentó conseguir un puesto para Weierstrass en la Universidad de Breslau, pero este intento fracasó. Weierstrass permaneció como profesor titular en Brauensberg hasta 1856, cuando aceptó el trabajo de sus sueños en la Universidad de Berlín. Mientras tanto, publicó un seguimiento de su artículo de 1854, que daba todos los detalles de su método de inversión de integrales hiperelípticas.

El mandato de Weierstrass en Berlín, junto con Kummer y Leopold Kronecker, convirtió a esa escuela en la meca matemática de Alemania en ese momento. Las concurridas conferencias de Weierstrass de los próximos años dan una idea de la diversidad y la profundidad de su investigación matemática: en 1856 discutió la teoría de las funciones elípticas aplicadas a la geometría y la mecánica, en 1859 abordó los fundamentos del análisis y en 1860 impartido conferencias sobre cálculo integral. Sus investigaciones produjeron una función continua que no era diferenciable en ninguna parte; la existencia de una función tan extraña destrozó la excesiva dependencia de la mayoría de los analistas en la intuición, ya que hasta ese momento los matemáticos solo podían concebir la no diferenciabilidad que ocurre en puntos aislados. El curso de Weierstrass de 1863 fundó la teoría de los números reales, un área en la que otros matemáticos como Richard Dedekind y George Cantor, también trabajarían. Él demostró que los números complejos son la única extensión algebraica conmutativa de los números reales, un resultado que Carl Friedrich Gauss declaró anteriormente pero nunca probó.

Los problemas de salud de Weierstrass continuaron y experimentó un colapso total en 1861; se tomó el año siguiente para recuperarse, pero nunca fue el mismo. A partir de ese momento, tuvo un asistente para escribir sus conferencias, y los dolores crónicos en el pecho reemplazaron su mareo.

Weierstrass organizó sus diversas conferencias en cuatro cursos principales: funciones analíticas, funciones elípticas, funciones abelianas y el cálculo de variaciones. Los cursos eran frescos y estimulantes, ya que gran parte del material era su propia investigación innovadora. Es un testimonio del legado de su estilo que los cursos modernos de análisis siguen la progresión de temas de Weierstrass, incluido el concepto de serie de potencia de una función, continuidad y diferenciabilidad y continuación analítica.

Weierstrass colaboró con Kummer y Kronecker de manera rentable durante muchos años, pero luego él y Kronecker se separaron de las ideas radicales de Cantor; Weierstrass apoyaba las ideas innovadoras de Cantor en teoría de conjuntos, pero Kronecker no podía aceptar las construcciones patológicas. Weierstrass tuvo muchos estudiantes excelentes, algunos de los cuales se convirtieron en matemáticos famosos, como Cantor, Sophus Lie y Felix Klein. Instruyó en privado a Sofia Vasilyevna Kovalévskaya, a quien no se le permitió inscribirse formalmente debido a su género. Weierstrass tuvo una gran relación intelectual con esta mujer, a quien ayudó a encontrar un puesto adecuado.

Weierstrass estaba muy preocupado por el rigor matemático. Sus altos estándares quedaron impresos para la generación siguiente y provocaron una intensiva investigación sobre los fundamentos de la matemática, como la construcción del sistema de números reales. Los estudios de convergencia de Weierstrass lo llevaron a distinguir diferentes tipos, lo que provocó la investigación en varias topologías para espacios de funciones. Estudió el concepto de convergencia uniforme, que preserva la continuidad, e ideó varias pruebas para la convergencia de series y productos infinitos. Su enfoque de publicación fue cuidadoso y metódico, por lo que sus publicaciones fueron pocas pero extremadamente profundas y exactas.

Weierstrass continuó enseñando hasta 1890. Sus últimos años se dedicaron a publicar los trabajos recopilados de Jakob Steiner y Carl Jacobi. Murió de neumonía el 19 de febrero de 1897 en Berlín, Alemania. Sus contribuciones a la matemática, en particular al análisis real y complejo, fueron extensas y de gran alcance, lo que le valió el epíteto de “padre del análisis moderno”. Su influencia también se extendió a través de la gran cantidad de estudiantes talentosos a quienes dirigió y que además desarrolló sus ideas en varias nuevas direcciones. Desde sus humildes comienzos como profesor de secundaria, Weierstrass logró grandes cosas para el campo de la matemática.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Bertrand Russell fue una de las personalidades matemáticas más coloridas del siglo XX, y se encuentra entre los lógicos más importantes de la era moderna. Creía en el potencial de que toda la matemática se redujera a la lógica y ejerció mucho esfuerzo para validar este paradigma. Russell también fue un activo filósofo y revolucionario social, aplicando sus ideas lógicas a la ciencia, la ética y la religión.

Resultado de imagen para russell

Bertrand Russell nació el 18 de mayo de 1872 en Ravenscroft, Gales. Era nieto de lord John Russell. Su madre y su padre murieron en 1874 y 1876, respectivamente, por lo que sus abuelos lo criaron. Este abuelo había servido dos veces como primer ministro bajo la reina Victoria, pero murió en 1878 y su abuela continuó con la educación del niño. Recibió educación privada al principio, y luego fue instruido en el Trinity College, en Cambridge, donde obtuvo los primeros logros en la matemática.

Russell se convirtió en académico, y finalmente fue elegido miembro de la Royal Society en 1908. Pasó sus primeros años en su programa centrado en la lógica, creyendo que toda la matemática podía reducirse a afirmaciones lógicas. En este sentido, era seguidor de Friedrich Ludwig Gottlob Frege, quien tenía una filosofía similar. El trabajo de Russell de 1910 sobre los Principia Mathematica, escrito junto con Alfred North Whitehead, estableció que las pruebas matemáticas podrían reducirse a pruebas lógicas. Los primeros volúmenes de este trabajo trataron sobre teoría de conjuntos, aritmética y lateoría de la medida; un cuarto volumen, sobre geometría, no fue completado. Parte de este enfoque, inspirado en las ideas de Frege, fue expresar los números y otros objetos matemáticos como conjuntos de clases que comparten una propiedad común. Este ambicioso proyecto perdió fuerza en los últimos años, probablemente debido a las tendencias filosóficas que se alejan del logicismo.

Antes de los Principia, Russell adquirió fama a través de la construcción de la llamada paradoja de Russell. Formó el conjunto (conjunto A) de todos los conjuntos que tienen la propiedad de que no son miembros de sí mismos. Luego uno hace la pregunta: ¿Es A (visto como un elemento) un miembro del conjunto A? Esto no se puede resolver como verdadero o falso, ya que cualquiera de las respuestas conduce a una contradicción. Esto demostró el problema fundamental de tomar colecciones de conjuntos y suponer que dicha colección es en sí misma un conjunto. Kurt Gödel utilizará posteriormente este concepto de autorreferencia para producir sus teoremas de incompletitud. 

La solución de Russell a la paradoja fue desarrollar su teoría de tipos, principalmente desarrollada en su lógica matemática de 1908, basada en la teoría de tipos. En esto Russell describió una jerarquía de clases para la cual la idea de conjunto está especialmente definida en cada nivel. Otras resoluciones a la paradoja han resultado del debilitamiento del poder del axioma básico de comprensión formulado por George Cantor, que establece que siempre se pueden reunir objetos que comparten una propiedad común en un conjunto. La consecuencia inmediata de la paradoja fue poner en duda el programa lógico propuesto por David Hilbert, que buscaba establecer rigurosamente los fundamentos de la lógica matemática y la teoría de conjuntos. Parecía que incluso el concepto intuitivo de conjunto se proyectaba en la sombra.

Además de estas importantes contribuciones a la lógica, Russell también fue famoso por su “filosofía analítica”, que intentaba plantear cuestiones filosóficas en el riguroso marco de la lógica matemática. Por supuesto, este enfoque computacional de la filosofía tiene una larga historia, que se remonta a René Descartes y otros matemáticos.

La vida personal y pública de Russell interfirió con el avance de su carrera. Fue declarado culpable de actividad contra la guerra en 1916, y esto resultó en su despido del Trinity College. Dos años más tarde fue nuevamente condenado y sometido a una breve pena de prisión. Durante su encarcelamiento, escribió su famosa Introducción a la Filosofía Matemática (1919). Tropezó con cuatro matrimonios que estuvieron plagados de asuntos extra matrimoniales, e incluso fue despedido de un puesto de profesor en el City College de Nueva York en 1940 después de que un juez dictaminó que era moralmente incapaz. Se postuló (pero no fue elegido) para el Parlamento tres veces; se convirtió en Earl Russell en 1931 después de la muerte de su hermano. Abrió una escuela experimental con su segunda esposa a finales de los años veinte. Sus sentimientos contra la guerra ganaron una mejor aceptación en las décadas de 1950 y 1960, cuando fue reconocido como líder en el movimiento antinuclear. El manifiesto de Russell-Einstein de 1955 exigía el abandono de las armas nucleares. En 1957, Russell organizó la Conferencia Pugwash, una convención de científicos contra las armas nucleares, y se convirtió en presidente de la Campaña por el Desarme Nuclear en 1958. Russell fue arrestado nuevamente en 1961 por protestas nucleares. 

Después de una vida llena de matemática, filosofía y protesta pública, Russell murió el 2 de febrero de 1970 en Penrhyndeudraeth, Gales. Fue reconocido por sus extensas contribuciones a la literatura y la ciencia, ganando el Premio Nobel de literatura en 1950. Es mejor conocido por su paradoja y su posterior resolución a través de la teoría de tipos, pero también a través de sus investigaciones posteriores sobre el logicismo y el problema de la incompletitud estudiado por Gödel. El pensamiento de Russell ha sido enormemente influyente en la lógica, la matemática y la filosofía, así como en la ética, la religión y la responsabilidad social. 

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Giuseppe Peano fue uno de los matemáticos más talentosos de finales del siglo XIX; destacaba por su atención al rigor y al detalle. Su trabajo sobre lógica matemática y teoría de conjuntos le ha ganado fama, pero también contribuyó a proyectos pedagógicos que demostraron no ser importantes. El genio creativo de Peano dio a luz a la famosa curva de Peano, y también construyó los axiomas de Peano.

Giuseppe Peano nació el 27 de agosto de 1858 en Cuneo, Italia. Sus padres eran agricultores, y Peano viajaba a pie todos los días a la escuela en Cuneo. Su tío era un sacerdote que reconoció los talentos naturales del niño y lo llevó a Turín en 1870 para prepararlo para los estudios universitarios. Peano comenzó en la Universidad de Turín en 1876, y allí estudió matemática, recibiendo su doctorado en 1880.

Peano tenía una habilidad notable para detectar las fallas lógicas en los argumentos. Al graduarse, fue nombrado asistente de Angelo Genocchi, y Peano pronto detectó un error en el libro de texto para uno de los cursos. La mayoría de las veces se hacía cargo de las clases de Genocchi, ya que el profesor ya mayor estaba enfermo, y en 1884 publicó un texto de las notas del curso. También había publicado ya varios trabajos de investigación después de 1880, y calificó para enseñar a nivel universitario en 1884.

En 1886, Peano investigó cuestiones de existencia y singularidad en la teoría de las ecuaciones diferenciales, y luego desarrolló un método para resolver tales ecuaciones utilizando aproximaciones sucesivas. También estaba enseñando en la Academia Militar en este momento, y luego fue designado para ocupar el cargo de Genocchi en Turín después de su muerte en 1889. Mientras tanto, publicó Geometrical Calculus en 1888, que comenzaba con un capítulo sobre lógica matemática, y desarrolló el concepto de espacio vectorial de Hermann Günter Grassmann. Peano empleó una notación moderna para este trabajo, que se basó en las ideas de Charles Sanders Peirce y George Boole. En 1889 publicó sus famosos axiomas de Peano, que definían los números naturales en términos de conjuntos, y definía de manera rigurosa tales ideas como prueba por inducción. Esta fue una contribución significativa a los fundamentos de la matemática, y sería explotada y desarrollada por muchos de los sucesores de Peano. 

Peano también es famoso por sus “curvas que rellenan el espacio”. Definió un mapeo continuo del intervalo unitario en el cuadrado unitario, en esencia construyendo una curva unidimensional que llenaba un espacio bidimensional. Este mapeo no tiene un inverso continuo, ya que eso equivaldría a establecer que la línea y el plano tienen la misma dimensión. Sin embargo, muchos matemáticos se vieron perturbados por el resultado patológico, que siguió el mismo espíritu de la obra de Georg Cantor.

Una vez nombrado para su nuevo cargo en la Universidad de Turín, Peano fundó la revista Rivista de matematica en 1891. Como editor de la revista, pudo asegurarse de que se mantuvieran altos estándares de rigor. En 1892 se embarcó en un nuevo proyecto, el Formulario matematico, que debía ser una colección de definiciones, teoremas y métodos de todos los temas de la matemática, que podría usarse como texto básico para cada curso de matemática. Este monumental esfuerzo no se completó hasta 1908. Resultó tener poca popularidad, ya que este enfoque meticuloso de la matemática no facilitó su aprendizaje. Peano fue considerado un buen maestro antes de la implementación del Formulario; después, los estudiantes y miembros de la facultad se quejaron de la aburrida exactitud de su método. 

Uno de los puntos culminantes de la carrera de Peano fue el Congreso Internacional de Filosofía celebrado en París en 1900. La formación lógica de Peano le permitió brillar entre sus colegas filósofos menos rigurosos, ya que pudo ganar todos los argumentos filosóficos en los que se vio envuelto. Su presencia allí causó una gran impresión en el joven Bertrand Russell, quien estaba emocionado por el poder de su notación y metodología. Peano también asistió a un congreso similar de matemáticos, en el que David Hilbert expuso sus famosos 23 problemas para el siglo XX. Peano estaba intrigado por el problema de Hilbert sobre los axiomas de la aritmética.

Los últimos años de Peano se dedicaron a un nuevo proyecto: la construcción de un nuevo idioma basado en el francés, el latín, el inglés y el alemán. El resultado “Latino sine flexione“, más tarde llamado Interlingua, ha tenido poca utilidad y es irrelevante para el desarrollo de la matemática. Peano murió el 20 de abril de 1932 en Turín, Italia. Fue un matemático brillante de gran precisión, estableciendo estándares de rigor que no eran comunes en ese momento. Su meticulosidad parece más apropiada para la era actual de la matemática. A pesar de que su trabajo en el Formulario y el Latino sine flexione pueden considerarse distracciones, sus contribuciones a la matemática son, sin embargo, muy importantes. Debe ser considerado como uno de los primeros fundadores de la lógica matemática. La curva de Peano también es una importante contribución a la topología y al estudio de la geometría fractal.

 

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Older Posts »