Feeds:
Entradas
Comentarios

Posts Tagged ‘Gottfried Leibniz’

Entre el momento de René Descartes y Sir Isaac Newton, se dice que Christiaan Huygens fue el matemático más grande de Europa. Hizo contribuciones sustanciales a la mecánica, la astronomía, la medición del tiempo, la teoría de la luz y la geometría. Su trabajo demostró la eficacia de un enfoque matemático para el estudio de la naturaleza, y Huygens desarrolló muchas herramientas matemáticas sofisticadas. 

Christiaan Huygens nació en La Haya, Países Bajos, el 14 de abril de 1629. Su familia era prominente y tenía una larga historia de servicio diplomático a la casa real. El padre de Christiaan, Constantijn Huygens, educó a sus dos hijos personalmente, cubriendo temas como música, idiomas antiguos, matemática y mecánica. Christiaan Huygens mostró sus considerables talentos intelectuales a una edad temprana, y tenía un don para aplicar la teoría a las construcciones reales: a los 13 años construyó un torno. 

En 1645 Huygens asistió a la Universidad de Leiden, donde estudió Derecho y Matemática. Durante sus dos años allí, se familiarizó con las obras recientes de Francois Viète, Pierre de Fermat y Descartes. Huygens comenzó a investigar la mecánica de la caída de los cuerpos y comenzó una correspondencia con Marin Mersenne. Después de completar sus estudios universitarios, se matriculó en el Colegio de Orange de 1647 a 1649, donde ejerció la abogacía. Sin embargo, Huygens no siguió una carrera en la diplomacia, sino que eligió ser un científico. 

Huygens vivió en su casa hasta 1666, recibiendo el apoyo financiero de su padre que le permitió centrarse en su investigación científica. Primero investigó sobre matemática, considerando cuadraturas de curvas y problemas algebraicos. Las contribuciones matemáticas de Huygens son importantes, ya que mejoró los métodos existentes y tuvo éxito en la aplicación de estos a fenómenos naturales. También desarrolló la nueva teoría de las evolutas y fue uno de los fundadores de la teoría de la probabilidad. 

En 1651, Huygens produjo un manuscrito que refutaba la cuadratura del círculo de Gregory de St. Vincent. En el mismo trabajo, derivó una conexión entre la cuadratura y el centro de gravedad para círculos, elipses e hipérbolas. Su próxima publicación, en 1654, aproxima el centro de gravedad de cualquier arco de un círculo y así obtiene una cuadratura aproximada. Una técnica similar, desarrollada más de una década después, produjo un método rápido para calcular logaritmos.  

Al enterarse del trabajo de probabilidad de Blaise Pascal, Huygens comenzó a estudiar problemas de juego en 1656, como la división justa de apuestas en un juego interrumpido. Inventó el concepto de expectativa matemática, que representa las ganancias a largo plazo en un juego de azar. Esta idea, expresada por Huygens en una forma primitiva, ahora es de importancia central para la teoría moderna de la probabilidad. 

En 1657 Huygens relacionó la longitud del arco de la parábola con la cuadratura de la hipérbola, y utilizó esta propiedad para encontrar el área de la superficie de un paraboloide de revolución. Un año después, descubrió un teorema vital del cálculo moderno: que el cálculo del área superficial de una superficie de revolución podía reducirse a encontrar la cuadratura de la curva normal. 

Su teoría de las evolutas, que se refiere a la geometría de las cuerdas que cuelgan de una superficie convexa, se desarrolló en 1659 como un componente de su investigación sobre los relojes de péndulo. Su método de evolutas determina esencialmente el radio de curvatura de una curva algebraica dada. Huygens también estudió logaritmos, comenzando en 1661, y en este sentido introdujo la función exponencial natural.  

Huygens también contribuyó a otras áreas de la ciencia. Completó un manuscrito sobre hidrostática en 1650, en el cual derivó la ley de Arquímedes de Siracusa a partir de un axioma básico. En 1652 formuló las reglas de la colisión elástica y comenzó su estudio sobre óptica. Más tarde, en 1655, junto con su hermano, recurrió al pulido de lentes y la construcción de telescopios y microscopios. Construyó algunos de los mejores telescopios de su época y pudo detectar los anillos de Saturno. Huygens también observó bacterias y otros objetos microscópicos. 

En 1656 Huygens inventó el reloj de péndulo como una herramienta para medir el tiempo. Se había vuelto cada vez más importante medir con precisión el tiempo, ya que esta tecnología era necesaria para la astronomía y la navegación. La invención de Huygens tuvo mucho éxito. En su investigación teórica de la oscilación del péndulo, Huygens descubrió que el período podía hacerse independiente de la amplitud si la trayectoria del péndulo fuera cicloide. Luego construyó el reloj de péndulo de forma tal que se induciría que el balanceo del péndulo tuviera una trayectoria cicloidal. Este llamado tautocronismo de la cicloide es uno de los descubrimientos más famosos de Huygens.  

A continuación, Huygens comenzó a estudiar la fuerza centrífuga y el centro de oscilación en 1659, obteniendo varios resultados fundamentales. Derivó rigurosamente las leyes de descenso a lo largo de planos y curvas inclinadas y obtuvo el valor de la aceleración debida a la gravedad en la Tierra, que es de aproximadamente 9,8 metros por segundo al cuadrado. Huygens volvió a considerar caídas resistiendo distintos medios (como el aire) en 1668, y concibió la resistencia (o fricción) como proporcional a la velocidad del objeto. Huygens también investigó la teoría ondulatoria de la luz; explicó la reflexión y la refracción en 1676 mediante su concepción de la luz como una serie de ondas de choque de movimiento rápido.  

Es interesante que Huygens no aceptara el concepto newtoniano de fuerza, y fue capaz de eludirlo por completo. También criticó el concepto de fuerza de Gottfried Leibniz, aunque estaba de acuerdo con el principio de la conservación en los sistemas mecánicos. En su filosofía natural, estuvo de acuerdo con Descartes, tratando de llegar a una explicación mecanicista del mundo. Una de sus obras más populares especuló sobre la existencia de vida inteligente en otros planetas, lo que Huygens pensó que era altamente probable. 

Durante el período 1650-1666, Huygens conoció a muchos científicos y matemáticos franceses, y visitó París varias veces. En 1666 Huygens aceptó la membresía en la recién fundada Académie Royale des Sciences y se mudó a París, donde permaneció hasta 1681. Fue el miembro más destacado de la academia y recibió un estipendio generoso. Pasó este tiempo desarrollando un programa científico para el estudio de la naturaleza, observando los cielos y exponiendo sus teorías de la gravedad y la luz.  

Huygens sufría de mala salud y varias veces se vio obligado a regresar a La Haya. En 1681 se fue de nuevo debido a una enfermedad y, debido a tensiones políticas y religiosas, no fue invitado a regresar a Francia. Huygens nunca se casó, pero pudo vivir en la propiedad familiar. En la última década de su vida, regresó a la matemática, habiéndose convencido de la fecundidad del cálculo diferencial de Leibniz. Sin embargo, el conservadurismo matemático de Huygens lo llevó a emplear sus viejos métodos geométricos, y esto de alguna manera inhibió su progreso y comprensión del cálculo. Sin embargo, Huygens pudo resolver varios problemas matemáticos planteados públicamente, como la isócrona de Leibniz, la tractriz y la catenaria. 

Huygens finalmente sucumbió a su constitución enferma, y murió el 8 de julio de 1695. Fue el científico y matemático más prominente de su tiempo (al menos antes que Newton y Leibniz se volvieran más productivos), e hizo contribuciones brillantes a diversas áreas de la ciencia. Sin embargo, la renuencia de Huygens a publicar teorías insuficientemente desarrolladas limitó su influencia en el siglo XVIII; tampoco tuvo ningún alumno para que llevara a cabo su pensamiento. Su trabajo en mecánica abrió nuevas fronteras de investigación, pero su trabajo matemático extendió principalmente técnicas más antiguas en lugar de abrir nuevas perspectivas para la exploración. Sin embargo, Huygens fue un maestro en la aplicación de métodos matemáticos a problemas científicos, como lo demuestra su trabajo sobre la medición del tiempo.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

Christian Goldbach era un matemático aficionado, que no poseía ningún entrenamiento formal. Sin embargo, mantuvo correspondencia con muchos científicos y matemáticos de toda Europa, y fue una de las pocas personas que comprendió los trabajos de Pierre de Fermat y Leonhard Euler. Sus contribuciones a la matemática fueron esporádicas con destellos de brillantez. También hubo lagunas sorprendentes en su conocimiento. Sin embargo, a través de sus comunicaciones matemáticas, pudo participar en las investigaciones matemáticas de su tiempo y estimular a otros hacia resultados fundamentales. 

Christian Goldbach nació en Königsberg, Prusia, el 18 de marzo de 1690. Su padre era ministro, y Goldbach recibió una buena educación, estudiando matemática y medicina en la Universidad de Königsberg. Alrededor de 1710 comenzó a viajar por Europa y conoció a varios matemáticos destacados, como Gottfried Leibniz, Abraham de Moivre y Daniel Bernoulli. Algún tiempo después de 1725 Goldbach recibió un puesto como profesor de matemática en la Academia Imperial de Rusia. 

Goldbach era un político hábil, y avanzó rápidamente en círculos políticos en detrimento de su investigación matemática. En 1728 se mudó a Moscú para convertirse en tutor del hijo del rey, Pedro II; regresó a San Petersburgo en 1732 y rápidamente se elevó a una posición poderosa en la Academia Imperial. En 1737 tenía la administración de la academia, pero estaba escalando simultáneamente en círculos gubernamentales. En 1742 cortó sus lazos con la academia, y finalmente ascendió al rango de consejero privado en 1760, supervisando la educación de la familia real. 

El conocimiento de Goldbach sobre matemática avanzada llegó a él de manera informal a través de discusiones con matemáticos en lugar de una lectura consistente. Se sintió intrigado por las series infinitas en 1712 después de conocer a Nikolaus Bernoulli, y esta fecha probablemente marque el comienzo de su propia investigación sobre ese tema. De sus varios trabajos, algunos de los cuales repiten material ya publicado por otros, dos muestran genuina originalidad: uno trata la manipulación de series infinitas, y el otro se refiere a una teoría de ecuaciones. Goldbach desarrolló un método para transformar una serie en otra sumando y restando ciertos términos sucesivamente. Se permitió que estos nuevos términos fueran divergentes, siempre y cuando el resultado final fuera convergente. En el segundo, Goldbach aplica algunos resultados de la teoría de números para probar si una ecuación algebraica dada tiene una raíz racional. Este método fue desarrollado a partir de una correspondencia con Leonhard Euler, con quien Goldbach comenzó a comunicarse en 1729. 

Además de estas contribuciones originales a la matemática, Goldbach se mantuvo al tanto de los desarrollos actuales y entró en el diálogo de los matemáticos con respecto a los nuevos resultados. Por ejemplo, Goldbach comunicó a Euler una de las conjeturas de Fermat sobre los números primos, quien fue capaz de construir un contraejemplo. También es famoso por la conjetura de Goldbach de que cada entero par podría expresarse como la suma de dos números primos. 

Goldbach murió el 20 de noviembre de 1764, en Moscú. Aunque Goldbach indudablemente poseía un talento matemático considerable, este no se desarrolló debido a su éxito en asuntos cívicos. Sin embargo, Goldbach fue capaz de estimular la investigación de ideas matemáticas en su propio tiempo, y también en la era moderna a través de su misteriosa conjetura.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Gottlob Frege realizó un trabajo sustancial en lógica matemática durante el siglo XIX; de hecho, es visto por muchos como el padre de la lógica matemática moderna. El lenguaje que creó para analizar rigurosamente la aritmética se desarrollaría luego en la sintaxis y la notación de la teoría de la demostración moderna. 

Gottlob Frege nació el 8 de noviembre de 1848 en Wismar, Alemania, hijo de Alexander Frege y Auguste Bialloblotzky. Su padre era director de una escuela secundaria para niñas en Wismar, y Gottlob asistió al Gymnasium allí. De 1869 a 1871 fue alumno en Jena, y después de este período se matriculó en la Universidad de Göttingen, donde tomó cursos de matemática, física, química y filosofía. Dos años más tarde obtuvo su doctorado en filosofía con la tesis Über eine geometrische Darstellung der imaginaren Gebilde in der Ebene (Sobre una representación geométrica de cosas imaginarias en el plano). Su disertación de 1874 se refería a ciertos grupos de funciones. En esta época, comenzó a trabajar en el proyecto de proporcionar una base rigurosa a la aritmética. Frege deseaba definir el número y la cantidad de una manera satisfactoria, y recurrió a la lógica como un vehículo apropiado.  

En este período de la historia, había poco en el camino acerca de un tratamiento coherente de la lógica matemática. Como Frege quería ser preciso en su desarrollo de la teoría de números, decidió construir un lenguaje de lógica para formular sus ideas. Las herramientas para analizar demostraciones matemáticas se publicaron en Begriffschrift en 1879, y algunas de las ideas de su disertación en Jena entraron en su concepto de cantidad. En el mismo año, fue nombrado profesor extraordinario en Jena, y fue nombrado profesor honorario en 1896. Su diligente trabajo hacia la construcción lógica de la aritmética a lo largo de los años dio lugar a su Grundgesetze der Arithmetik en dos volúmenes (Leyes básicas de la aritmética) ) (1893-1903). En 1902 Bertrand Russell señaló una contradicción en el sistema de la aritmética de Frege; este comentario resultó ser desastroso, ya que Frege no pudo encontrar ninguna forma de remediar el problema. De hecho, como demostraría el trabajo posterior de Kurt Gödel, cualquier esfuerzo para construir teorías de números completas y consistentes estaba condenado al fracaso. 

El Begriffschrift debe verse como un lenguaje formal, como un vehículo, para el pensamiento puro. Este lenguaje consistía en varios símbolos (como letras) que podían combinarse de acuerdo con ciertas reglas (la gramática) para formar enunciados. Al igual que con la aritmética, después de la cual se modeló el lenguaje de Frege, se podían realizar cálculos cuyo resultado sería un cálculo lógico en lugar de una cantidad numérica. La idea de un cálculo lógico se remonta al menos a Gottfried Leibniz, quien supuso que un día todo el debate filosófico podría reducirse a cálculos lógicos. El cálculo de Frege podía usarse para formalizar la noción de una demostración matemática, de modo que uno pudiera, esencialmente, calcular la conclusión.  

Los componentes básicos del cálculo de Frege son un símbolo de afirmación (representado por un trazo vertical), un símbolo condicional (por ejemplo, A implica B) y una regla de deducción que establece lo siguiente: si afirmamos A y A implica B, entonces podemos afirmar B. Frege también desarrolló la notación para la negación, y demostró que el “y” y el “o” podían expresarse en términos de los símbolos condicional y de negación. Además de estas nociones básicas, añadió una teoría de la cantidad, definiendo rigurosamente nociones tales como “para todo” y “existe”.

Hay una escuela de matemática llamada formalismo, cuyos partidarios creen que no hay un significado verdadero o inherente a la matemática, sino que la matemática es puramente un lenguaje formal con el cual otras ideas pueden expresarse, y la verdad matemática puede alcanzarse solo jugando de acuerdo a las reglas del juego. Frege no era un formalista y no estaba interesado en aplicar su sistema a las preguntas relacionadas con una agenda formalista. Irónicamente, su trabajo fue bastante adecuado como base para la lógica formal.

El trabajo de Frege Grundlagen der Arithmetik (Fundamentos de la aritmética) (1884) define la noción de número y se basa en el lenguaje introducido en Begriffschrift. Aquí hace una crítica a las teorías de números anteriores, señalando sus insuficiencias; él argumenta que la igualdad de número es un componente esencial de la noción de número. Grundgesetze incorpora y refina su trabajo anterior, incluidas las mejoras basadas en varios artículos. Muchas de estas ideas tuvieron una gran influencia en la discusión filosófica subsiguiente, en particular influyendo en la filosofía de Wittgenstein.

Después de 1903, la potencia del pensamiento de Frege estaba en declive; parecía incapaz de mantenerse al día con una cultura matemática cada vez más moderna y extraña. En este último período, gastó su energía reaccionando contra varios nuevos desarrollos en matemática, y especialmente entró en conflicto con David Hilbert y su programa para la axiomatización de la matemática. En 1917 Frege se retiró, y después de esto produjo Logische Untersuchungen (Investigaciones lógicas) como una extensión del trabajo anterior. Murió en Bad Kleinen, Alemania, el 26 de julio de 1925.

Frege es principalmente recordado por su trabajo en lógica matemática, que condujo a la teoría moderna de la demostración. Otros grandes lógicos como Russell y Gödel continuaron su trabajo. Aunque el esfuerzo de Frege para construir una teoría de números completa y consistente estaba condenado al fracaso, las ideas que formuló en el curso de su investigación influyeron mucho en las generaciones posteriores de matemáticos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »