Feeds:
Entradas
Comentarios

Posts Tagged ‘Gottfried Leibniz’

Los matemáticos griegos clásicos rehuyeron el estudio del infinito, tanto lo infinitamente grande como lo infinitamente pequeño (lo infinitesimal). Los infinitesimales son la piedra angular del cálculo, y muchos griegos, como Arquímedes de Siracusa, dieron los primeros pasos vacilantes hacia un descubrimiento completo del cálculo. Sin embargo, la mayoría rechazó la noción de cantidades infinitamente divisibles, como un continuo, y esta reacción se debió en gran parte a las paradojas de Zenón.

Zenón de Elea nació aproximadamente en el año 490 a.C. en Elea, Italia. Él es de ascendencia griega a pesar de su nacimiento en Italia, y es considerado en la historia miembro del grupo de filósofos griegos. Existe muy poca información confiable sobre su vida, pero se dice que su padre era Telautagoras. Zenón finalmente estudió en la escuela de filosofía de Elea, donde conoció a su maestro Parménides. La escuela eleática, fundada por Parménides, enseñó el monismo, el concepto de que todo es uno. Esta filosofía influyó en Zenón para formular varias paradojas que desafiaban los conceptos de divisibilidad infinita.

Platón afirma que Zenón y Parménides viajaron a Atenas en el 450 a.C., donde se encontraron con el joven Sócrates y discutieron filosofía con él. Antes de viajar a Atenas, Zenón ya había adquirido cierta fama a través de la publicación de un libro (que no ha sobrevivido) que contenía 40 paradojas. Estas paradojas forman una disección profundamente estimulante del concepto del continuo, perturbando así las cómodas nociones de cosas comunes como el movimiento, el tiempo y el espacio. Una de las suposiciones de Zenón es la divisibilidad: si una magnitud se puede dividir en dos, entonces se puede dividir para siempre. El trabajo de Richard Dedekind luego establecería esta propiedad de continuo para los números reales. Zenón también asumió que no existe ningún objeto de magnitud cero (no lo expresó de esta manera, ya que los griegos no tenían el cero).

En la paradoja llamada «La dicotomía», Zenón afirma que para atravesar una distancia, primero es necesario atravesar la mitad de esa distancia; pero para llegar a la mitad, primero se requiere ir un cuarto del camino. Continuando con este razonamiento indefinidamente, Zenón concluye que comenzar es imposible y que, por lo tanto, el movimiento es imposible. Esta paradoja generalmente se resuelve sumando la serie geométrica de potencias recíprocas de dos. En «La flecha», Zenón declara que el movimiento es imposible, porque (suponiendo que la instancia actual de tiempo «ahora» es indivisible) si una flecha se mueve cierta distancia en un instante de tiempo indivisible, entonces se movió la mitad de esa distancia en la mitad del tiempo, lo que resulta en una división del instante. Esto puede resolverse permitiendo que el tiempo sea un continuo, infinitamente divisible.

La paradoja más famosa de Zenón es la de Aquiles: establece que se ejecuta una carrera entre el héroe griego Aquiles y una tortuga, donde la lenta tortuga comienza con una ventaja. Después de un tiempo, Aquiles alcanza la mitad de la distancia intermedia. Pero la tortuga ha seguido su camino; Aquiles luego corre la mitad de la distancia restante, pero nuevamente la tortuga ha avanzado más. ¡Llevando este argumento hasta el infinito, Zenón concluye que Aquiles nunca puede ponerse al día! Esto también se puede resolver configurando una serie geométrica adecuada. Sin embargo, las resoluciones de estas paradojas se basan en ciertas nociones de infinito y propiedades del continuo. La estructura matemática detrás de estos conceptos no se desarrolló hasta muchos siglos después. Sir Isaac Newton, Gottfried Leibniz y Blaise Pascal sentaron las bases modernas del cálculo. A finales del siglo XIX, Georg Cantor, Friedrich Ludwig Gottlob Frege y Bertrand Arthur William Russell realizaron trabajos más avanzados sobre el continuo, así como las propiedades básicas de los números reales, entre otros. Por lo tanto, la influencia de Zenón fue de gran alcance, ya que hizo algunas preguntas muy profundas sobre el tiempo, el espacio y el movimiento.

Zenón murió en algún momento alrededor del año 425 a.C., y una fuente cuestionable relata que fue ejecutado después de un intento fallido de eliminar a un tirano de Elea. Aunque era filósofo, las ideas de Zenón provocaron una revolución matemática milenios después, ya que sus paradojas apuntaban a la necesidad de proporcionar una base rigurosa a los conceptos intuitivos del espacio y el tiempo. Sus paradojas sobre el movimiento demostraron las dificultades de considerar la velocidad como una distancia dividida por el tiempo, ya que esta relación parece ser cero dividida por cero cuando el tiempo transcurrido de viaje se reduce a cero; solo con el descubrimiento de límites e infinitesimales en la disciplina del cálculo diferencial se resolvió este enigma. Además de proporcionar una gran cantidad de obstáculos mentales para los intelectuales posteriores, Zenón también sirvió para inhibir el crecimiento de las matemáticas griegas para abarcar el infinito; por lo tanto, fue una influencia retardadora clásica, pero milenios más tarde se convirtió en un impulso para el desarrollo matemático.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncio publicitario

Read Full Post »

John Venn contribuyó tanto a la probabilidad como a la lógica a través de su investigación, y fue uno de los primeros matemáticos en introducir el simbolismo de la lógica en el estudio de la probabilidad. Es más conocido por los diagramas de Venn que son útiles en el estudio de la lógica.

John Venn nació el 4 de agosto de 1834 en Hull, Inglaterra. Su familia pertenecía al ala evangélica de la Iglesia de Inglaterra, y Venn se convirtió brevemente en ministro. Asistió a las dos escuelas de Londres, Highgate e Islington, y estudió en Cambridge desde 1853 hasta 1857. Fue elegido miembro de su universidad y mantuvo su lugar durante toda su vida.

Venn tomó las órdenes sagradas en 1859 y trabajó por un corto tiempo como ministro antes de regresar a Cambridge como profesor de filosofía moral. Renunció a sus órdenes de oficina en 1883, debido a su creciente desacuerdo con el dogma anglicano, aunque siguió siendo un miembro devoto de la iglesia. En el mismo año también fue elegido miembro de la Royal Society.

Venn escribió varios textos sobre probabilidad y lógica, que fueron bastante populares a finales del siglo XIX y principios del XX. La lógica del azar de Venn atrajo las críticas de Augustus De Morgan y George Boole; fue especialmente crítico con el enfoque algebraico de Boole a la lógica. Venn también construyó la definición empírica de probabilidad, que establece que la probabilidad de que ocurra un evento se define como el límite a largo plazo de la razón de las veces que ocurrió históricamente. Esta definición tiene muchas ventajas sobre el enfoque más clásico, ya que permite eventos que no son igualmente probables. Sin embargo, un inconveniente es que la noción de tal límite no está bien definida. Esto llevó a un trabajo posterior sobre leyes de grandes números y la formulación moderna (o axiomática) de la teoría de la probabilidad.

Los trabajos sobre lógica de Venn también contienen diagramas geométricos para representar situaciones lógicas: no fue el primero en usarlos, ya que Gottfried Leibniz los había usado previamente de manera sistemática, y Leonhard Euler desarrolló la noción aún más. Por lo tanto, los diagramas de Venn se basaron en una tradición histórica existente de tales ayudas geométricas; sin embargo, Venn desarrolló sistemáticamente estas representaciones geométricas. Estos dibujos se han utilizado ampliamente en matemáticas elementales para que los jóvenes entrenen la lógica.

Venn murió el 4 de abril de 1923, en Cambridge. Además de sus esfuerzos por mejorar los fundamentos de la lógica, destaca su trabajo sobre representaciones esquemáticas de eventos lógicos y sus aplicaciones a la probabilidad. Su enfoque se ha vuelto bastante estándar en los estudios elementales de probabilidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Seki Takakazu fue una figura singular en la historia de la matemática: en un momento en que la actividad matemática en Japón era bastante limitada, Seki hizo sorprendentes descubrimientos, rivalizando con los de matemáticos occidentales como Gottfried Leibniz. Sus logros son notables a la luz del hecho de que Seki no podía beneficiarse de una cultura matemática y colegas con quienes intercambiar ideas.

Seki nació en marzo de 1642 en Fujioka, Japón. Su familia era de la casta samurai, pero una familia de la nobleza, conocida como Seki Gorozayemon, adoptó a Seki. Posteriormente, fue identificado por este apellido adoptado. Seki fue un niño prodigio en matemática. Un sirviente de la casa le presentó el tema cuando tenía nueve años, y Seki fue autodidacta a partir de entonces. Cuando se convirtió en adulto, construyó una biblioteca de libros matemáticos chinos y japoneses, y gradualmente fue reconocido como un experto: se lo conoció como el «sabio aritmético». Atrajo a un grupo de alumnos y provocó un crecimiento en la actividad matemática de Japón.

Seki sirvió como examinador de cuentas para el señor de Koshu, y cuando su maestro fue ascendido, se convirtió en un samurai shogunato en 1704. Más tarde, fue nombrado maestro de ceremonias en la casa del shogun.

El trabajo matemático de Seki, basado en antiguos matemáticos chinos, representó un avance considerable en el conocimiento. Publicó Hatsubi Sampo en 1674, un trabajo donde trató y resolvió ecuaciones algebraicas. En su exposición, Seki se muestra a sí mismo como un maestro cuidadoso y minucioso, explicando esto su popularidad entre los alumnos. En 1683 estudió los determinantes de una matriz, tema que no fue examinado en Occidente hasta una década más tarde, cuando Leibniz los usó para resolver ciertos problemas. Los llamados números de Bernoulli, llamados así por Jakob Bernoulli, fueron investigados anteriormente por Seki. Utilizó el concepto de números negativos para resolver ecuaciones, pero no tuvo conocimiento de los números complejos. Seki también investigó los cuadrados mágicos, siguiendo el trabajo de Yang Hui, y utilizó el método de Newton-Raphson para resolver ecuaciones algebraicas, descubierto independientemente de Sir Isaac Newton. Su trabajo sobre ecuaciones diofánticas también es digno de consideración. 

Poco más se sabe de Seki, excepto que murió el 24 de octubre de 1708 en Tokio, Japón. Es difícil determinar hasta qué punto su escuela estaba familiarizada con el cálculo, pero parece que Seki hizo algunos progresos en esta área. Esto es sorprendente, ya que Japón no tenía la tradición histórica que los europeos podían reclamar, es decir, las obras geométricas de las civilizaciones griegas y árabes anteriores. Seki debe ser visto en el linaje de los matemáticos chinos, a pesar de que era japonés, ya que estudió a fondo las matemáticas anteriores del continente.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »