Feeds:
Entradas
Comentarios

Posts Tagged ‘Henri Poincaré’

Henri Poincaré ha sido descrito como el último de los grandes matemáticos adeptos en varias ramas de la matemática y la ciencia; sin embargo, podría hacerse una afirmación similar sobre David Hilbert. Poincaré fue un genio de primer rango, cuyas innovadoras contribuciones moldearon (y en algunos casos, esencialmente, fundaron) varias áreas de la matemática, incluida la geometría algebraica, la topología algebraica, la teoría de las funciones automórficas en el análisis complejo y la dinámica no lineal. Su trabajo continúa ejerciendo influencia en estudios modernos de topología y geometría.

Jules-Henri Poincaré nació el 29 de abril de 1854 en Nancy, Francia, hijo de Léon Poincaré, profesor de medicina en la Universidad de Nancy, y Eugénie Launois. Henri Poincaré era físicamente débil, sufría de miopía y falta de coordinación; estuvo enfermo por un tiempo de difteria. Sin embargo, sus dones intelectuales compensaron con creces estas deficiencias. Su madre le enseñó a escribir a una edad temprana, y Poincaré más tarde se convirtió en un poderoso autor.

Cuando Poincaré aún era joven, comenzó a trabajar en la escuela local de Nancy en 1862 (esta escuela más tarde pasó a llamarse Lycée Henri Poincaré en su honor). Durante los siguientes 11 años, Poincaré demostró ser el mejor estudiante, sobresaliendo en todos los temas, especialmente en matemática; a menudo ganaba el primer premio en las competiciones a las que se presentaba. Ingresó en la École Polytechnique en 1873 y se graduó dos años después. Poincaré fue mucho más allá de sus compañeros en la mayoría de los temas intelectuales; también le interesaba mucho la música, especialmente el piano. Leyó ampliamente sobre ciencia, y así obtuvo un conocimiento profundo de electricidad, óptica y termodinámica.

A continuación, Poincaré realizó estudios adicionales en la École des Mines y trabajó brevemente como ingeniero de minas mientras trabajaba en su doctorado en la Universidad de París. Su mentor fue Charles Hermite, y Poincaré completó una tesis sobre ecuaciones diferenciales en 1879. Desde aquí, Poincaré pasó por varios puestos: profesor de análisis en la Universidad de Caen, catedrático en la Facultad de Ciencias de París en 1881, y profesor de la cátedra de física matemática y probabilidad en la Sorbona en 1886. Sus conferencias eran desorganizadas, pero abordaban material nuevo cada año; Poincaré condimentó sus temas matemáticos con aplicaciones de óptica, astronomía, electricidad y otras ciencias afines.

Además de su trabajo científico, que incluye contribuciones a la mecánica celeste, la fluidez de canales y filosofía de la ciencia, también se le acreditó como co-inventor de la teoría especial de la relatividad junto con Albert Einstein: Poincaré profundizó en varias de las más grandes ramas de la matemática pura. Su trabajo de tesis condujo a la definición de función automórfica, que ahora es un componente clásico de la teoría del análisis complejo (los automorfismos también desempeñan un papel importante en el álgebra abstracta). Estas son funciones complejas cuyos valores son invariantes en ciertos grupos de transformaciones del espacio dominio. Poincaré tuvo una correspondencia fluida con Felix Klein en relación con estas funciones nuevas e intrigantes, que tenían conexiones con la geometría no euclidiana.

El Analysis Situs de Poincaré de 1895 fue un tratamiento sistemático de topología (el estudio de mapeos continuos que operan en superficies de alta dimensión), un tema incipiente a fines del siglo XIX. En este y en otros artículos de la próxima década, Poincaré desarrolló el tema de la topología algebraica. Esencialmente, esta asignatura usa herramientas algebraicas, como grupos y anillos, para describir y clasificar objetos topológicos. La famosa  conjetura de Poincaré, probada en 2003 por Grigori Perelman, establece que cualquier variedad tridimensional con un grupo de homotopía igual al de una esfera debe ser topológicamente equivalente (es decir, puede deformarse continuamente sin desgarrarse) en una forma de esfera tridimensional. Poincaré lo conjeturó después de probarlo en el campo intuitivo de dos dimensiones, y lo conjeturó para dimensión tres. Es intrigante que la conjetura haya sido verificada para dimensiones más altas, pero una prueba para la dimensión tres fue eludida por tanto tiempo. El trabajo de Poincaré dominó la escena de la topología algebraica durante las siguientes cuatro décadas: sus métodos, sus preguntas y sus resultados fueron enormemente influyentes.

Poincaré inició el estudio de las funciones de varias variables complejas a través de su trabajo de 1883 sobre el principio de Dirichlet. Este  difícil tema todavía está siendo estudiado hoy. Trabajó en el campo de la geometría algebraica, el estudio de variedades dadas como solución de ecuaciones algebraicas en varias variables. En 1910 y 1911 desarrolló métodos poderosos que le permitieron probar resultados conjeturados previamente relacionados con curvas algebraicas embebidas en superficies algebraicas. Poincaré estudió la teoría de números en 1901 examinando ecuaciones diofánticas. Más tarde afirmó que un enfoque axiomático de los fundamentos de la aritmética sería incapaz de proporcionar una prueba rigurosa de la consistencia de la teoría de números; su opinión fue reivindicada décadas más tarde a través del trabajo de Kurt Gödel.

Poincaré también estudió óptica, electricidad, telegrafía, capilaridad, elasticidad, termodinámica, teoría del potencial, teoría cuántica y teoría de la relatividad y cosmología. En una competencia de 1889 en Suecia, desarrolló nuevas ideas en dinámicas no lineales sobre el problema de los tres cuerpos de la mecánica celeste. Aunque ganó el premio, un error percibido en su manuscrito lo condujo a una extensa correspondencia con el matemático Magnus Mittag-Leffler. Algunos datan el nacimiento de la teoría del caos en esta comunicación. Además de su otro trabajo sobre mecánica de fluidos, Poincaré también escribió artículos científicos dirigidos a un público popular, y avanzó un largo camino hacia la matemática y la ciencia de interés para la gente común de Francia.

Poincaré también contribuyó a la filosofía de la ciencia, y fue una influencia guía en la lógica matemática, donde destacó la importancia de la intuición sobre la axiomatización. El proceso de pensamiento de Poincaré fue el tema de un estudio psicológico realizado por Toulouse, quien lo describió como un verdadero genio que se basa en una sorprendente intuición matemática. Poincaré dejaba los problemas por un tiempo, dejando que su mente reflexionara inconscientemente sobre ellos; luego, volvía al proyecto con vigor, dando saltos repentinos del intelecto. De esta manera pudo lograr una notable diversidad y profundidad de material matemático. Por lo tanto, la lógica sola era infructuosa según Poincaré, y solo era útil como herramienta para la corrección de la intuición. Esta mentalidad es bastante similar a la filosofía de Luitzen Egbertus Jan Brouwer.

Poincaré fue muy honrado durante su vida, recibió muchos premios: fue elegido para la Academia de Ciencias en 1887 y se convirtió en presidente en 1906. Debido a la amplitud de sus investigaciones fue el único miembro de la academia elegido para las cinco secciones: geometría, física, geografía, navegación y mecánica. Murió de manera algo prematura el 17 de julio de 1912, en París, Francia. Aunque sus contribuciones a la matemática fueron fenomenales, no tuvo su propia escuela, ya que no fue mentor de estudiantes. Sin embargo, las ideas y los métodos de Poincaré han demostrado tener una gran influencia en la matemática moderna, especialmente en la topología algebraica, el análisis complejo y la geometría diferencial.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

August Möbius fue un excelente matemático, pionero de muchas ideas en topología, el estudio de mapas continuos que actúan sobre superficies de alta dimensión. Este campo de la matemática se estudió poco a poco a principios del siglo XIX y, de hecho, solo recibiría una investigación sistemática por parte de Henri Poincaré, Luitzen Egbertus Jan Brouwer y otros a principios del siglo XX. El trabajo de Möbius presentó las primeras investigaciones de orientación, superficies unilaterales y coordenadas homogéneas.

August Möbius nació el 17 de noviembre de 1790 en Schulpforta, Alemania. Su padre, Johann Heinrich Möbius, era un instructor de baile que murió cuando Möbius tenía solo tres años. Fue criado por su madre, descendiente de Martín Lutero, y fue educado por ella hasta los 13 años. Möbius siguió estudiando en la universidad local y se matriculó en la Universidad de Leipzig en 1809.

En Leipzig, Möbius siguió la preferencia de su familia de que estudiara leyes, pero después de su primer año abandonó este programa para dedicarse a la matemática, la física y la astronomía. Allí Karl Mollweide, un astrónomo con inclinaciones matemáticas, influyó en Möbius. En 1813 viajó a la Universidad de Gotinga para estudios de posgrado, y fue enseñado por el mismo Carl Friedrich Gauss. Como resultado de tener este gran mentor, Möbius adquirió una sólida formación en matemática y astronomía. En 1815, Möbius completó su tesis doctoral, que trataba de la ocultación de las estrellas fijas, y luego comenzó su investigación posdoctoral. Aunque su trabajo en este momento estaba en el campo de la astronomía, tenia un alto sabor matemático.

Evitando la posibilidad de ser reclutado en el ejército prusiano, Möbius completó su segunda tesis sobre ecuaciones trigonométricas, y pronto fue nombrado profesor de astronomía en Leipzig en 1816. El avance de la carrera de Möbius llegó lentamente, esencialmente debido a su pobre capacidad para impartir clases, aunque su trabajo matemático fue de gran calidad y originalidad.

Möbius trabajó de manera silenciosa y constante en una variedad de proyectos matemáticos, produciendo trabajos de gran calidad e integridad. Además de sus artículos sobre mecánica celeste y principios astronómicos, Möbius escribió sobre geometría proyectiva, teoría de números, topología y poliedros. Su trabajo clásico sobre geometría analítica de 1827 introdujo las coordenadas homogéneas (una forma de describir superficies proyectivas) y la red de Möbius (una cierta configuración en el espacio proyectivo). Esta investigación fue fundamental para estudios más modernos en geometría proyectiva. La función de Möbius y la fórmula de inversión de Möbius son significativas en el estudio de los números primos y la factorización en la teoría de números. Pero en el incipiente campo de la topología, Möbius demostró su genio creativo, con investigaciones innovadoras de superficies de un solo lado y el tema de la orientación (la determinación de las direcciones en el sentido de las agujas del reloj y en el sentido contrario a las agujas del reloj sobre una superficie). En particular, redescubrió la llamada banda de Möbius en 1858 (previamente había sido explorada por Johann Listing). Este objeto es esencialmente una tira de papel torcida que tiene un solo lado. 

En 1844, Möbius se convirtió en profesor titular en Leipzig. Mientras tanto, asumió tareas astronómicas, supervisando la reconstrucción del observatorio local desde 1818 hasta 1821. Se casó en 1820 y tuvo una hija y dos hijos. También en 1844 interactuó brevemente con Hermann Günter Grassmann, cuyo trabajo sobre topología y geometría algebraica fue bastante similar al de Möbius. Murió el 26 de septiembre de 1868 en Leipzig, Alemania.

Möbius es quizás más conocido por la banda  de Möbius y la fórmula de inversión de Möbius, aunque su trabajo más importante fue probablemente en geometría proyectiva. Su trabajo se distinguió por su originalidad y cohesión, así como por su profundidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Un cambio de paradigma importante en la intuición geométrica tuvo lugar en el siglo XIX, cuando Carl Friedrich Gauss, János Bolyai y Lobachevsky desarrollaron, independientemente, geometrías alternativas al espacio plano. Lobachevsky fue el primero en publicar este descubrimiento. Sus generalizaciones de la noción intuitiva de espacio han demostrado ser extremadamente relevantes dentro de la matemática (allanando el camino para la definición abstracta y el estudio de la geometría) y la física, a través del modelado del efecto de la gravedad en la forma del universo. 

Nikolai Lobachevsky nació el 2 de diciembre de 1792 en Gorki, Rusia. Su padre, Ivan Maksimovich, era empleado administrativo, y su madre se llamaba Praskovia Aleksandrovna Lobachevskaya. En 1800, la madre de Lobachevsky se trasladó, junto con Lobachevsky y sus dos hermanos, a Kazan. Allí los tres chicos se inscribieron en el Gymnasium con becas. En 1807 Lobachevsky ingresó a la Universidad de Kazan, donde estudió matemática y física, obteniendo su maestría en 1812. 

En 1814 Lobachevsky dio una conferencia sobre matemática y mecánica como adjunto y se convirtió en profesor el mismo año; fue promovido en 1822 y ocupó diversos cargos en la Universidad de Kazan, incluido el de decano del departamento de física y matemática, bibliotecario de la universidad, rector y asistente del fideicomisario del distrito de Kazan. Su primer trabajo importante, escrito en 1823, se llamó Geometriya (Geometría), y sus estudios geométricos básicos lo condujeron a sus investigaciones posteriores sobre geometría no euclidiana. Informó de sus primeros descubrimientos en 1826 y publicó estas ideas en 1829–1830. 

Lobachevsky intentó inicialmente probar el quinto postulado de Euclides de Alejandría, como muchos antes que él (incluyendo Claudio Ptolomeo, Thabit ibn Qurra, Abu Ali al-Haytham, Adrien-Marie Legendre y John Wallis) lo habían intentado y fracasado. Pronto recurrió a la construcción de una geometría más general que no requería el quinto postulado, que establece que dada una recta y un punto fuera de ella, existe una única recta a través del punto que es paralela a la recta dada. La geometría resultante, que Lobachevsky denominó “geometría imaginaria”, permitió la construcción de múltiples rectas paralelas distintas a través del punto dado. Desde aquí pudo deducir varias propiedades interesantes: la más importante es que la geometría era consistente(no había contradicción en sus reglas, por más que fueran intuitivas sus características). Curiosamente, la suma de los ángulos en un triángulo es menor que 180 grados; posteriormente, Lobachevsky intentó deducir la geometría del universo midiendo los ángulos de un vasto triángulo cósmico atravesado por estrellas distantes. Concluyó que, dentro de los márgenes del error de medición, los ángulos sumaban 180 grados y, por lo tanto, el universo es euclidiano. 

Lobachevsky produjo varios artículos más sobre este tema; dio tanto una definición axiomática como una constructiva de su “pangeometría”, que más tarde se conocería como geometría hiperbólica. Sus ideas no fueron aceptadas inicialmente en el extranjero, aunque fue promovido en Kazán y convertido en noble en 1837. Se casó en 1832 con una adinerada aristócrata, Lady Varvara Aleksivna Moisieva, y tuvieron siete hijos. 

Además de su importante trabajo geométrico, Lobachevsky contribuyó en álgebra, series infinitas y teoría de la integración. Sin embargo, este trabajo estaba condimentado por sus ideas geométricas y se relacionaba con su “geometría imaginaria”. Gauss apreció los esfuerzos de Lobachevsky, que eran similares a su propio trabajo sobre geometría no euclidiana, y ayudó a su elección a la Academia de Ciencias de Göttingen después de 1842. 

Lobachevsky, a pesar de su matrimonio ventajoso, experimentó dificultades financieras en sus últimos años, debido al costo de su familia numerosa y al mantenimiento de su patrimonio. Sus ojos se deterioraron con la edad hasta que quedó totalmente ciego. Murió el 24 de febrero de 1856, en Kazán. 

El reconocimiento del trabajo pionero de Lobachevsky llegó lentamente. Muchos matemáticos, como Arthur Cayley, no pudieron comprender su significado y lo denigraron. En la década de 1860, las obras de Bolyai y Lobachevsky ganaron cada vez más renombre entre los franceses, y Eugenio Beltrami más tarde dio una construcción de la geometría lobachevskiana en un círculo cerrado del plano. Después de 1870 Karl Weierstrass y Felix Klein se interesaron por el trabajo de Lobachevsky, y Klein finalmente formuló las diversas geometrías (elíptica, plana e hiperbólica) en términos de invariantes de transformaciones de grupo. Posteriormente se demostró que la geometría lobachevskiana era un caso especial de las geometrías de Cayley. Henri Poincaré, junto con Klein, se basó en las ideas de Bernhard Riemann y Lobachevsky. En el siglo XX se demostró que la geometría no euclidiana era relevante para la teoría general de la relatividad. Es intrigante que luego se demostró que el espacio del universo tiene curvatura variable, con la urdimbre y la trama de su tejido definidas por fuerzas gravitacionales. Esta realidad está modelada por la geometría de Lobachevsky.

 

 

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Older Posts »