Feeds:
Entradas
Comentarios

Posts Tagged ‘Isaac Newton’

El segundo de los famosos hermanos Bernoulli, Johann Bernoulli, formaba parte de una notable familia de matemáticos. Fue su destino pasar su primera carrera bajo la sombra de su consumado hermano Jakob Bernoulli, pero finalmente se hizo famoso por su propio genio. Bernoulli, uno de los principales proponentes del cálculo diferencial leibniziano en la vida posterior, fue en cierto punto el matemático más eminente de Europa. 

Johann Bernoulli nació el 6 de agosto de 1667 en Basilea, décimo hijo de una rica familia mercantil. Los Bernoulli eran originarios de Holanda, pero el padre de Johann Bernoulli, Nikolaus Bernoulli, se había establecido en Suiza como y se casó con la rica Margaretha Schönauer. Originalmente, Johann Bernoulli estaba destinado a una carrera en los negocios, pero después de un aprendizaje fallido como vendedor, se le permitió en 1683 inscribirse en la universidad. Su hermano mayor Jakob Bernoulli estaba dando conferencias allí sobre física experimental, y Johann Bernoulli se benefició de la tutela de su hermano mayor en matemática. Respondiendo a una de las disputas lógicas en 1685 de Jakob Bernoulli, Johann Bernoulli fue elevado a magister artium y comenzó el estudio de la medicina. Su primera publicación de procesos de fermentación apareció en 1690, y obtuvo su doctorado en 1694 con una disertación matemática en el campo de la medicina.

Mientras tanto, Johann Bernoulli seguía ávidamente estudiando matemática (sin la aprobación de su padre) y, junto con Jakob Bernoulli, dominó el cálculo diferencial de Gottfried Leibniz. La solución de Johann Bernoulli al problema de la catenaria, planteado por Jakob Bernoulli en 1691, mostró su talento y lo marcó como un matemático líder de Europa. En ese momento estaba en Ginebra, pero pronto se trasladó a París, donde obtuvo reconocimiento gracias a su “teorema de oro”: la determinación de una fórmula para el radio de curvatura de una curva arbitraria. Bernoulli se reunió con Guillaume de L’Hôpital, y fue empleado por este último para darle clases de cálculo infinitesimal, por lo que Bernoulli fue recompensado magníficamente. Cuando Bernoulli volvió más tarde a Basilea, la correspondencia entre ambos continuó y se convirtió en la fuente de un primer libro de cálculo titulado Analyze des infiniment petits (Análisis de los infinitos pequeños). Bernoulli fue un fiel y ávido comunicador, escribiendo 2.500 cartas con 110 eruditos a lo largo de su vida; entre estas personas estaba Leibniz, con quien Bernoulli intercambió sus opiniones científicas a partir de 1693.

Durante este período, un hiato de sus estudios médicos, Bernoulli obtuvo varios resultados matemáticos que fueron publicados como artículos cortos. De principal importancia es su trabajo sobre las funciones exponenciales y el desarrollo en serie de ellas por integración. La integración era vista como la operación inversa a la diferenciación, y por lo tanto podía ser utilizada para resolver ecuaciones diferenciales. La penetrante intuición de Johann Bernoulli permitió una elegancia de solución que las técnicas más brutales de Jakob Bernoulli no lograron, lo que ilustró el contraste entre los dos hermanos. La formulación vía cálculo exponencial de Johann Bernoulli, que es simplemente la aplicación del cálculo diferencial de Leibniz a funciones exponenciales, amplió aún más la aplicabilidad de métodos infinitesimales. En 1695 sumó la serie armónica infinita, desarrolló teoremas de suma para funciones trigonométricas e hiperbólicas, y describió la generación geométrica de pares de curvas. La suma de los cuadrados de los recíprocos permaneció impermeable a ambos esfuerzos de los Bernoulli, y fue calculada más adelante por Leonhard Euler, el estudiante más capaz de Johann Bernoulli.

Habiendo completado su licenciatura en medicina, Bernoulli aceptó la cátedra de matemáticasen la Universidad de Groningen. Ya se había casado con Dorothea Falkner cuando partió para Holanda y estaba lleno de resentimiento hacia Jakob Bernoulli. La relación con su hermano ya había comenzado a desintegrarse: ambos hombres tenían personalidades pendencieras, y Johann Bernoulli era un ávido debatidor y polémico. Sin embargo, la feistiness de Johann Bernoulli extendió más allá de su hermano; en 1702 participó en disputas teológicas con profesores de Groningen, y fue etiquetado un seguidor de Spinoza.

En junio de 1696 Bernoulli planteó el siguiente problema, conocido como la braquistócrona: determinar el camino de descenso más rápido entre dos lugares fijos. Dedicando el problema “a los matemáticos más sagaces de todo el mundo”, Bernoulli dio un plazo de medio año para encontrar la solución; Leibniz, que solucionó inmediatamente el problema, predijo con exactitud que sólo cinco personas en el mundo eran capaces de éxito: Sir Isaac Newton, el propio Leibniz, los hermanos Bernoulli y L’Hôpital. La braquistócrona proporciona otro contraste de las habilidades de los hermanos: el análisis engorroso de Jakob Bernoulli puso los fundamentos para el cálculo de variaciones, mientras que el acercamiento de Johann Bernoulli redujo ingeniosamente el problema a una pregunta en óptica, y dedujo la ecuación diferencial correcta de la ley de la refracción. Jakob Bernoulli planteó posteriormente el problema isoperimétrico, cuya solución requería el nuevo cálculo de variaciones, que había sido característicamente subestimado por Johann Bernoulli. Su solución publicada era por lo tanto inadecuada, dando por resultado el desprestigio desenfrenado de Jakob Bernoulli. No fue hasta muchos años después de la muerte de Jakob Bernoulli que Johann Bernoulli admitió la supremacía del cálculo de variaciones. En 1718, Johann Bernoulli produjo una solución elegante del problema isoperimétrico utilizando la metodología de Jakob Bernoulli, y este trabajo contenía las nociones tempranas para el cálculo moderno de variaciones.

El trabajo de Johann Bernoulli sobre la cicloide, en su descripción de la “fatídica curva del siglo XVII”, promulga su desarrollo de la integración de funciones racionales a través del método de las fracciones parciales. Un acercamiento algebraico formal a tales cálculos era típico de Johann Bernoulli, y su influencia en las técnicas comunes del cálculo se ha sentido con los tiempos modernos.

Después de la muerte de Jakob Bernoulli en 1705, Johann Bernoulli le sucedió en la cátedra de matemática en Basilea, al parecer una decisión motivada por su familia. Pronto se vio envuelto en la polémica disputa de prioridad entre Newton y Leibniz, y criticó abiertamente el apoyo de Taylor al método de fluxiones (el cálculo newtoniano). En debates y concursos posteriores, Bernoulli pudo analizar con éxito algunos problemas, como la trayectoria de la curva balística en el caso general, para la que el cálculo newtoniano era insuficiente. Después de la muerte de Newton en 1727, Bernoulli sería reconocido como el principal matemático de Europa. En Basilea estudió mecánica teórica y mecánica aplicada, y en 1714 publicó su único libro, Théorie de la manoeuvre des vaisseaux. En este trabajo critica las teorías de navegación francesas y desarrolla el principio de velocidades virtuales, con aplicaciones a sistemas mecánicos conservadores. En otros trabajos investigó la transmisión del momento, el movimiento de los planetas y el fenómeno del barómetro luminoso.

Bernoulli fue sumamente honrado durante su vida, siéndole concedida la calidad de miembro de las academias de París, de Berlín, de Londres, de San Petersburgo y de Bolonia. Se benefició de un alto estatus social en Basilea, debido a sus conexiones maritales y la riqueza de la familia, y ocupó varias oficinas cívicas allí. Murió el 1 de enero de 1748, en Basilea. Su ingenio al resolver problemas matemáticos particulares lo convirtió en uno de los mejores matemáticos de su época. En términos de legado, no fue tan exitoso como su hermano Jakob Bernoulli, pero sin embargo dejó un influyente trabajo sobre mecánica y ecuaciones diferenciales.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Anuncios

Read Full Post »

El campo de la estadística se divide entre dos facciones: Bayesianos y Frecuentistas. Este último grupo, a veces conocido como el ortodoxo, mantiene una perspectiva clásica sobre la probabilidad, mientras que el primer grupo debe su génesis a Thomas Bayes, un predicador inconformista y un estadístico aficionado. Aunque sus escritos no eran copiosos, en comparación con muchos de los matemáticos famosos de la historia, la extensa influencia de un ensayo notable le ha otorgado a Bayes no poca cantidad de fama.

Nacido en 1702 hijo de un teólogo y predicador disidente (se oponía a ciertas doctrinas y tradiciones de la Iglesia anglicana establecida), Bayes fue criado bajo las influencias de las opiniones no tradicionales de su padre. Con una educación privada decente, Bayes ayudó a su padre en sus tareas pastorales en Holborn, Londres, y más tarde se convirtió en ministro en Tunbridge Wells. Nunca se casó, pero poseía un amplio círculo de amigos.

Al parecer, Bayes estaba familiarizado con las matemáticas actuales de la época, incluyendo el cálculo diferencial e integral de Sir Isaac Newton y las ideas bien establecidas de la probabilidad clásica. La obra matemática de Bayes, Introducción a la doctrina de fluxiones, se publicó en 1736. El trabajo de Newton sobre cálculo, que incluía el concepto de infinitesimales, a veces llamado fluxiones, era controvertido, ya que muchos científicos aborrecían el concepto de cantidades infinitamente pequeñas como intelectualmente repugnantes. De hecho, el obispo Berkeley -un filósofo contemporáneo- había escrito el Analista, una crítica completa de la obra de Newton; La Doctrina de Fluxiones de Bayes fue una refutación matemática de Berkeley, y fue apreciada como una de las más sólidas disculpas por el cálculo de Newton. 

Pero Bayes adquirió cierta fama por su artículo “Ensayo para resolver un problema en la doctrina de las oportunidades”, publicado póstumamente en 1763. Aunque la teoría de la probabilidad ya estaba bien fundada con textos recientes de Jakob Bernoulli y Abraham de Moivre, bastiones teóricos de similar tenor faltaban para la rama de la estadística. La tarea que Bayes estableció para sí mismo fue determinar la probabilidad, o posibilidad, de la verdad de las hipótesis estadísticas a la luz de los datos observados. El marco de las pruebas de hipótesis, en el cual las afirmaciones científicas podían ser rechazadas o aceptadas (técnicamente, “no rechazadas”) sobre la base de los datos, fue vagamente entendido en algunos casos especiales -Sir Ronald Aylmer Fisher formularía posteriormente pruebas de hipótesis con rigor matemático, precisión y generalidad. Por supuesto, rechazar o no rechazar una afirmación da una decisión en blanco o negro a un concepto más susceptible a sombras de gris. Esta es la pregunta que Bayes trató de responder.

La idea básica es que las nociones previas de la probabilidad de un evento son a menudo llevadas a una situación -siempre que existan presuposiciones de sesgo, colorean la evaluación de la probabilidad de ciertos resultados imprevistos y afectan la interpretación de las observaciones. En ausencia de conocimiento previo, se podría asumir una denominada distribución  a priori no-informativa para la hipótesis, que sería lógicamente la distribución de probabilidad uniforme. Bayes demostró cómo calcular la probabilidad de una hipótesis después de las observaciones que se han hecho, lo que fue designado por el término distribución posterior de la hipótesis. Su método de cálculo implicaba una fórmula que expresaba la probabilidad posterior en términos de la probabilidad previa y la distribución asumida de los datos; esto fue llamado posteriormente Teorema de Bayes.

Mientras que la matemática involucrada es bastante elemental (muchos estudiantes aprenden el teorema de Bayes en las dos primeras semanas de un curso sobre probabilidad y estadística), el concepto revolucionario era que a las hipótesis científicas se les asignaran probabilidades de dos especies. Parece que Bayes no estaba satisfecho con su argumento para esta formulación, y se negó a publicar el ensayo, a pesar de que este trabajo teórico dio una base sólida para la inferencia estadística. Un amigo envió el artículo a la Royal Society después de la muerte de Bayes, y el trabajo fue popularizado por el influyente Pierre-Simon Laplace. Bayes era un soltero rico, y pasó la mayor parte de su vida desempeñando funciones religiosas en las provincias. Fue honrado vía su inclusión en la Royal Society de Londres en 1742, tal vez por su Doctrina de Fluxiones. Murió el 17 de abril de 1761, en Tunbridge Wells, Inglaterra.

Mucha controversia ha surgido sobre la metodología de Bayes. Los bayesianos muestran el fundamento lógico de la teoría, que está de acuerdo con la práctica general de la ciencia. La oposición de los Frecuentistas condena la variación en los resultados estadísticos. Conviene señalar que no sólo los análisis de las estadísticas clásicas (especialmente las estadísticas no paramétricas) y las matemáticas, sino los resultados del esfuerzo científico en general, están siempre supeditados a suposiciones presupuestas que no pueden ser completamente justificadas. Algunos bayesianos conciben las probabilidades como grados objetivos de confianza, mientras que otros conciben creencias puramente subjetivas. El marco bayesiano corresponde a la actualización de las estructuras de creencias a través de la acumulación de información empírica.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Isaac Barrow fue el primero en descubrir ciertos aspectos del cálculo diferencial. Hay una cierta controversia sobre esto, y también sobre la extensión de su influencia en Sir Isaac Newton, que fue su sucesor en Cambridge. Sin embargo, las conferencias de Barrow sobre geometría contienen algunos de los primeros teoremas del cálculo, y por esto es recordado.

Barrow nació en octubre de 1630 (la fecha exacta es desconocida), hijo de Thomas Barrow, un próspero drapeador de lino y fiel realista. Su madre, Anne, murió en el parto. Un rebelde en su juventud, Barrow más tarde se disciplinó y aprendió griego, latín, lógica y retórica. En 1643 ingresó en el Trinity College, donde permanecería durante 12 años. Barrow, como su padre, era un partidario del rey, pero en Trinity la atmósfera se hizo cada vez más anti-realista. Se ganó su grado B.A. en 1648, fue elegido fellow de la universidad en 1649, y recibió su grado M.A. en matemática en 1652. Con estas credenciales, ingresó a su posición final como conferenciante y examinador en la universidad.

Es probable que su próximo puesto hubiera sido una cátedra de griego, pero Barrow fue expulsado de su posición por el gobierno de Cromwell en 1655. Barrow vendió sus libros y emprendió una gira por Europa que duró cuatro años. Cuando regresó de sus viajes, Carlos II acababa de volver al poder; Barrow tomó órdenes sagradas y obtuvo así la cátedra Regius. En 1662 él también aceptó la cátedra Gresham de geometría en Londres, y el año siguiente fue designado como primer profesor Lucasiano de matemática en Cambridge. Durante los seis años siguientes, Barrow concentró sus esfuerzos en escribir las tres series de Lectiones, una colección de conferencias.

La educación de Barrow había sido bastante tradicional, centrada en Aristóteles y los pensadores del Renacimiento, y en algunos temas seguía siendo muy conservador. Pero estaba muy intrigado por el renacimiento del atomismo y la filosofía natural de René Descartes: en la tesis de su maestría estudió a Descartes en particular. Hacia 1652 había leído muchos comentarios de Euclides de Alejandría, así como autores griegos más avanzados como Arquímedes de Siracusa. Su Euclidis elementorum libri XV (los primeros principios de Euclides en 15 libros), escrito en 1654, fue diseñado como un texto de pregrado, haciendo hincapié en la estructura deductiva sobre el contenido. Más tarde produjo comentarios sobre Euclides, Arquímedes y Apolonio de Perga. 

Clic sobre la imagen para acceder al recurso

Aparentemente, la fama científica de Barrow se debió a sus Lectiones, aunque no han sobrevivido. La primera serie Lucasiana, Lectiones mathematicae -dada de 1664 a 1666- se ocupa de los fundamentos de la matemática desde un punto de vista griego. Barrow considera el estado ontológico de los objetos matemáticos, la naturaleza de la deducción, la magnitud espacial y la cantidad numérica, el infinito y el infinitesimal, la proporcionalidad y la inconmensurabilidad, así como las entidades continuas y discretas. Sus Lectiones geometricae fueron un estudio técnico de geometría superior.

En 1664 encontró un método para determinar la línea tangente a una curva, problema que debía ser resuelto completamente por el cálculo diferencial; su técnica implica la rotación y la traslación de líneas. Las conferencias posteriores de Barrow son una generalización de procedimientos de tangencia, cuadratura y rectificación compilados a partir de su lectura de Evangelista Torricelli, Descartes, Frans van Schooten, Johann Hudde, John Wallis, Christopher Wren, Pierre de Fermat, Christiaan Huygens, Blaise Pascal y James Gregory. El material de estas conferencias no fue totalmente original, basándose fuertemente en los autores anteriores, especialmente en Gregory, y las Lectiones geometricae de Barrow no fueron ampliamente leídas.

Barrow también contribuyó al campo de la óptica, aunque sus Lectiones opticae pronto fue eclipsado por la obra de Newton. La introducción describe un cuerpo lúcido, que consiste en “colecciones de partículas diminutas casi imposibles de concebir”, como la fuente de los rayos de luz; el color es una dilución de grosor. El trabajo se desarrolla a partir de seis axiomas, incluyendo la ley euclidiana de la reflexión y la ley seno de la refracción. Gran parte del material se toma de Abū ‘Alī al-Ḥasan ibn al-Ḥasan ibn al-Hayṯam, Johannes Kepler y Descartes, pero el método de Barrow para encontrar el punto de refracción en una interfaz plana es original.

Mucho se ha planteado la hipótesis de la relación entre Barrow y Newton; algunos dicen que Newton derivó muchas de sus ideas sobre el cálculo de Barrow, pero hay poca evidencia de esto. A finales de 1669 los dos colaboraron brevemente, pero no está claro si tuvieron alguna interacción antes de ese tiempo. En ese año Barrow había renunciado a su silla, siendo reemplazado por Newton, con el fin de convertirse en el Real Capellán de Londres, y en 1675 se convirtió en vicerrector de la universidad.

Barrow nunca se casó, contentándose con la vida de soltero. Su personalidad era contundente y sus sermones teológicos eran extremadamente lúcidos y perspicaces, aunque no fue un predicador popular. Barrow era también uno de los primeros miembros de la sociedad real, incorporada en 1662. Era pequeño pero fuerte, y gozó de buena salud; su muerte temprana el 4 de mayo de 1677 se debió a una sobredosis de drogas.

La contribución matemática de Barrow parece algo marginal comparada con la producción prodigiosa de su contemporáneo Newton. Sin embargo, él fue un matemático importante en su tiempo, ganando fama a través de su popular  Lectiones, y fue el primero en derivar ciertas proposiciones del cálculo diferencial.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »