Feeds:
Entradas
Comentarios

Posts Tagged ‘Jakob Bernoulli’

El siglo XVIII fue testigo del desarrollo de varias ideas matemáticas del siglo XVII: el cálculo fue un ejemplo importante. Leonhard Euler fue excepcional entre sus pares no solo por la amplitud y profusión de su obra, sino también por su gran originalidad; fundó gran parte de la teoría de números, definió el concepto moderno de función y formuló una teoría general para el cálculo de variaciones. Su renombre y virtuosismo fueron tales que el siglo XVIII a veces se conoce como la “Era de Euler”. 

Leonhard Euler nació en Basilea el 15 de abril de 1707. Su padre, Paul Euler, era un ministro protestante, y su madre, Margarete Brucker, era hija de un ministro; esta base religiosa permaneció con Euler a lo largo de su vida. El padre de Euler, que se había interesado en la matemática al haber asistido a las conferencias de Jakob Bernoulli en la Universidad de Basilea, educó a su hijo en sus primeros años. Debido a que su Gymnasium no enseñaba matemática, Euler estudió en privado con un matemático aficionado, y mostró un talento notable para alguien de su edad. En 1720 ingresó en la Universidad de Basilea y pronto estuvo bajo la guía de Johann Bernoulli. En 1722 recibió su licenciatura en artes, y un año más tarde su maestría en filosofía; a los 16 años, se unió al departamento de teología. 

Sin embargo, la fuerza de Euler estaba en la matemática, y pronto abandonó su ambición de ser ministro. Por esta época comenzó su propia búsqueda en la matemática y publicó un artículo sobre trayectorias recíprocas algebraicas. Había pocas oportunidades en Suiza para matemáticos jóvenes, por lo que Euler aceptó una oferta para unirse a la nueva Academia de Ciencias de San Petersburgo en 1727. Su nombramiento oficial fue como adjunto de fisiología, aunque se le permitió trabajar en matemática. Euler se convirtió en profesor de física en 1731 y en profesor de matemática en 1733; la atmósfera en la joven academia fue estimulante para Euler, quien interactuó con Jakob Hermann, Daniel Bernoulli y Christian Goldbach. 

La vida de Euler estuvo marcada por su notable diligencia y actividad. Su investigación matemática fue informada en las sesiones de la academia; mientras tanto, participó en la formación de científicos rusos, así como en el estudio del territorio ruso (Euler ayudó en la construcción de mapas geográficos) y en el desarrollo de nueva tecnología (Euler estudió problemas de construcción naval y de navegación). Pero sus contribuciones a la matemática fueron prolíficas: Euler preparó más de 80 obras en sus primeros 14 años en San Petersburgo. 

Muchas de sus mejores ideas fueron formuladas en su juventud, incluso en Basilea, y se desarrollaron mucho después. Debido a su voluminosa correspondencia con otros científicos, los descubrimientos de Euler a menudo se hicieron públicos antes de que fueran publicados; esto le trajo una gran cantidad de fama. En 1733 se casó con Katharina Gsell, y pronto tuvo dos hijos. Su tranquila vida fue estropeada solamente por la pérdida de la visión de su ojo derecho en 1738; según Euler, esto se debió a la sobrecarga de su trabajo cartográfico. Sin embargo, en 1740 la situación política en Rusia se volvió inestable, y Euler aceptó una oferta para trabajar en la Sociedad de Ciencias de Berlín. 

Euler se quedó en Berlín durante 25 años, tiempo durante el cual fue bendecido con muchos más hijos. Durante este período, trabajó en las academias de Berlín y San Petersburgo. Fue director de la Sociedad de Ciencias de Berlín, que transformó en gran medida. Además de las numerosas tareas administrativas, se ocupó de varios problemas prácticos, como la corrección del nivel del canal de Finow. Consultó con el gobierno sobre problemas de seguros, pensiones e hidráulica, e incluso organizó algunas loterías estatales. Mientras tanto, Euler recibió una pensión de la Academia de San Petersburgo y, a cambio, editó el diario de la academia, le informó sobre nuevas ideas científicas y supervisó competiciones. Euler recibió 12 premios de la Académie des Sciences de París de 1738 a 1772. 

El período de Berlín fue fructífero, ya que Euler produjo más de 380 obras, algunas de las cuales fueron extensas, sobre temas como el cálculo de variaciones, el cálculo de órbitas, balística, análisis, movimiento lunar y cálculo diferencial. Sus famosas Lettres à une princesse d’Allemagne sur buts sujets de physique et de philosophie (Cartas a una princesa alemana sobre diversos temas de física y filosofía) se escribieron de manera popular y se convirtieron en un gran éxito en Europa. Euler participó en muchos debates académicos sobre temas como la religión de la razón pura expuesta por Gottfried Leibniz, y el principio de mínima acción. 

Después de 1759, la relación de Euler con el rey Federico de Prusia se deterioró, y finalmente regresó a San Petersburgo en 1766. Poco después de su regreso, una breve enfermedad lo dejó completamente ciego; esto dificultó su capacidad de investigar, pero con la ayuda de asistentes pudo dictar sus pensamientos y así continuar su trabajo. El único cambio parece ser que sus artículos se volvieron más concisos, y la mitad del total de sus obras se produjo después de 1765. Su memoria (podía recitar literalmente la Eneida de Virgilio) permaneció impecable, y continuó teniendo ideas originales. La actividad de Euler en la academia no disminuyó cuando murió el 18 de septiembre de 1783, de una hemorragia cerebral.   

Euler fue uno de los matemáticos más importantes desde Sir Isaac Newton. Estaba profundamente interesado en las aplicaciones, pero desarrollaría la matemática pertinente a niveles profundos de abstracción y generalidad. Su tema principal fue el análisis, contribuyendo al cálculo de variaciones, la teoría de las ecuaciones diferenciales, las funciones de una variable compleja y la teoría de funciones especiales. Se le deben muchas convenciones y notaciones modernas, como el símbolo f(x) para el valor de una función y i para la raíz cuadrada de -1. 

En teoría de números, a Euler le preocupaba la teoría de la divisibilidad, introduciendo la llamada función de Euler, que cuenta la cantidad de divisores de un entero dado. Estos estudios lo llevaron al descubrimiento de la ley de la reciprocidad cuadrática, cuya prueba completa fue luego establecida por Carl Friedrich Gauss. Euler investigó las descomposiciones de números primos como combinaciones lineales de cuadrados, y trabajó en el análisis diofántico a través de fracciones continuas. Sus métodos eran algebraicos, pero Euler fue el primero en introducir métodos analíticos a la teoría de números, en particular, dedujo una famosa identidad que relacionaba sumas de cuadrados recíprocos con un producto de números primos, que fue un primer paso en el estudio de la función zeta de Riemann. Euler estudió varias constantes matemáticas, como e y pi, así como la constante de Euler (que surge en el estudio de la serie armónica divergente). 

Euler enunció el teorema que dice que un polinomio algebraico de grado n tiene n raíces de la forma a+bi, que ahora se conoce como el teorema fundamental del álgebra. Su prueba de 1751 tuvo algunas omisiones, que luego fueron corregidas por Gauss. Euler también intentó derivar una fórmula exacta para las raíces del polinomio de quinto grado, y sus fallas lo llevaron a métodos de aproximación de análisis numérico. 

Aunque muchos matemáticos habían estudiado series infinitas, Euler fue inusualmente exitoso en su cálculo, obteniendo fórmulas simples para sumas de recíprocos de potencias pares de enteros. A través de estos estudios, Euler estudió funciones especiales (como las funciones de Bessel) y descubrió la constante de Euler para la aproximación de la serie armónica. Hizo un gran uso de las series de potencias e introdujo series trigonométricas antes que Jean Baptiste Joseph Fourier como herramienta analítica. Euler creía que las series divergentes podían ser útiles, y este esfuerzo llegaría a buen término mucho más tarde, en el siglo XX. 

Euler presentó la idea de que el análisis matemático es el estudio de las funciones; para este fin, definió más claramente el concepto de función, que se aproxima mucho a la noción moderna. A través de la consideración del logaritmo de los números negativos, Euler llegó a un entendimiento de la exponenciación de números imaginarios, derivando muchos hechos elementales cruciales. Avanzó en el conocimiento de los números complejos, descubriendo las ecuaciones diferenciales que relacionan las partes real e imaginaria de una función analítica. Euler aplicó sus técnicas al cálculo de integrales reales.  

También realizó numerosos descubrimientos en el cálculo diferencial e integral, derivando reglas de sustitución, validando el intercambio de derivadas parciales y fundando el concepto de integrales múltiples. Como resultado de los muchos casos especiales y técnicas de integración que empleó, se descubrieron las funciones beta y gamma, que son útiles en física. Euler hizo grandes contribuciones al campo de las ecuaciones diferenciales, incluido el método de variación de constantes, así como el uso de curvas características. Algunas de las aplicaciones de este trabajo incluyen problemas de cuerdas vibrantes, hidrodinámica y el movimiento del aire en las tuberías. 

Sus estudios en el cálculo de variaciones lo llevaron a la ecuación diferencial de Euler, y su exposición del tema se convirtió en un clásico. Euler fue el primero en formular los principales problemas de este tema y los principales métodos de solución. En geometría, Euler investigó la trigonometría esférica y fundó una teoría de líneas sobre una superficie, uno de los pasos iniciales hacia el moderno tema de la geometría diferencial. Analizó la curvatura de una superficie en términos de la curvatura de las curvas principales embebidas e introdujo las coordenadas gaussianas, que se usaron ampliamente en el siglo XIX. 

Euler también fue el primer autor en topología, resolviendo el famoso enigma de siete puentes de Königsberg; estudió poliedros, obteniendo lo que más tarde se conocería como la característica de Euler, una fórmula que relaciona su número de aristas, caras y vértices. 

Además de estas contribuciones a la matemática pura, Euler trabajó en mecánica, astronomía y óptica. Euler sistematizó la mecánica, introduciendo métodos analíticos que simplificaron enormemente el tema. Estudió mecánica celeste y elasticidad, derivando la famosa fórmula de pandeo de Euler, utilizada para determinar la fuerza de las columnas. En mecánica de fluidos, estudió las posiciones de equilibrio y presentó tres obras clásicas sobre el movimiento de los fluidos incompresibles; Euler también mejoró el diseño de la turbina hidráulica. 

En astronomía, Euler estaba interesado en la determinación de órbitas de cometas y planetas, en la teoría de la refracción y en la naturaleza física de los cometas. Presentó una extensa teoría lunar, que permitía un cálculo más preciso de la posición longitudinal de un barco en el mar. Euler ayudó a la física matemáticamente (es decir, al introducir muchas técnicas de análisis para comprender mejor ciertos problemas). De hecho, se le acredita como fundador de la física matemática. Estudió también la óptica, construyendo una teoría de la luz no como partícula que veía la iluminación como el producto de ciertas oscilaciones en el éter ambiental.  

Euler fue un hombre humilde, pero también uno de los mejores científicos y matemáticos de todos los tiempos, y especialmente del siglo XVIII; fue reconocido por sus compañeros como un genio sobresaliente. Su investigación matemática ha estimulado una enorme cantidad de actividad posterior, y muchas de sus ideas se adelantaron a su tiempo.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

El segundo de los famosos hermanos Bernoulli, Johann Bernoulli, formaba parte de una notable familia de matemáticos. Fue su destino pasar su primera carrera bajo la sombra de su consumado hermano Jakob Bernoulli, pero finalmente se hizo famoso por su propio genio. Bernoulli, uno de los principales proponentes del cálculo diferencial leibniziano en la vida posterior, fue en cierto punto el matemático más eminente de Europa. 

Johann Bernoulli nació el 6 de agosto de 1667 en Basilea, décimo hijo de una rica familia mercantil. Los Bernoulli eran originarios de Holanda, pero el padre de Johann Bernoulli, Nikolaus Bernoulli, se había establecido en Suiza como y se casó con la rica Margaretha Schönauer. Originalmente, Johann Bernoulli estaba destinado a una carrera en los negocios, pero después de un aprendizaje fallido como vendedor, se le permitió en 1683 inscribirse en la universidad. Su hermano mayor Jakob Bernoulli estaba dando conferencias allí sobre física experimental, y Johann Bernoulli se benefició de la tutela de su hermano mayor en matemática. Respondiendo a una de las disputas lógicas en 1685 de Jakob Bernoulli, Johann Bernoulli fue elevado a magister artium y comenzó el estudio de la medicina. Su primera publicación de procesos de fermentación apareció en 1690, y obtuvo su doctorado en 1694 con una disertación matemática en el campo de la medicina.

Mientras tanto, Johann Bernoulli seguía ávidamente estudiando matemática (sin la aprobación de su padre) y, junto con Jakob Bernoulli, dominó el cálculo diferencial de Gottfried Leibniz. La solución de Johann Bernoulli al problema de la catenaria, planteado por Jakob Bernoulli en 1691, mostró su talento y lo marcó como un matemático líder de Europa. En ese momento estaba en Ginebra, pero pronto se trasladó a París, donde obtuvo reconocimiento gracias a su “teorema de oro”: la determinación de una fórmula para el radio de curvatura de una curva arbitraria. Bernoulli se reunió con Guillaume de L’Hôpital, y fue empleado por este último para darle clases de cálculo infinitesimal, por lo que Bernoulli fue recompensado magníficamente. Cuando Bernoulli volvió más tarde a Basilea, la correspondencia entre ambos continuó y se convirtió en la fuente de un primer libro de cálculo titulado Analyze des infiniment petits (Análisis de los infinitos pequeños). Bernoulli fue un fiel y ávido comunicador, escribiendo 2.500 cartas con 110 eruditos a lo largo de su vida; entre estas personas estaba Leibniz, con quien Bernoulli intercambió sus opiniones científicas a partir de 1693.

Durante este período, un hiato de sus estudios médicos, Bernoulli obtuvo varios resultados matemáticos que fueron publicados como artículos cortos. De principal importancia es su trabajo sobre las funciones exponenciales y el desarrollo en serie de ellas por integración. La integración era vista como la operación inversa a la diferenciación, y por lo tanto podía ser utilizada para resolver ecuaciones diferenciales. La penetrante intuición de Johann Bernoulli permitió una elegancia de solución que las técnicas más brutales de Jakob Bernoulli no lograron, lo que ilustró el contraste entre los dos hermanos. La formulación vía cálculo exponencial de Johann Bernoulli, que es simplemente la aplicación del cálculo diferencial de Leibniz a funciones exponenciales, amplió aún más la aplicabilidad de métodos infinitesimales. En 1695 sumó la serie armónica infinita, desarrolló teoremas de suma para funciones trigonométricas e hiperbólicas, y describió la generación geométrica de pares de curvas. La suma de los cuadrados de los recíprocos permaneció impermeable a ambos esfuerzos de los Bernoulli, y fue calculada más adelante por Leonhard Euler, el estudiante más capaz de Johann Bernoulli.

Habiendo completado su licenciatura en medicina, Bernoulli aceptó la cátedra de matemáticasen la Universidad de Groningen. Ya se había casado con Dorothea Falkner cuando partió para Holanda y estaba lleno de resentimiento hacia Jakob Bernoulli. La relación con su hermano ya había comenzado a desintegrarse: ambos hombres tenían personalidades pendencieras, y Johann Bernoulli era un ávido debatidor y polémico. Sin embargo, la feistiness de Johann Bernoulli extendió más allá de su hermano; en 1702 participó en disputas teológicas con profesores de Groningen, y fue etiquetado un seguidor de Spinoza.

En junio de 1696 Bernoulli planteó el siguiente problema, conocido como la braquistócrona: determinar el camino de descenso más rápido entre dos lugares fijos. Dedicando el problema “a los matemáticos más sagaces de todo el mundo”, Bernoulli dio un plazo de medio año para encontrar la solución; Leibniz, que solucionó inmediatamente el problema, predijo con exactitud que sólo cinco personas en el mundo eran capaces de éxito: Sir Isaac Newton, el propio Leibniz, los hermanos Bernoulli y L’Hôpital. La braquistócrona proporciona otro contraste de las habilidades de los hermanos: el análisis engorroso de Jakob Bernoulli puso los fundamentos para el cálculo de variaciones, mientras que el acercamiento de Johann Bernoulli redujo ingeniosamente el problema a una pregunta en óptica, y dedujo la ecuación diferencial correcta de la ley de la refracción. Jakob Bernoulli planteó posteriormente el problema isoperimétrico, cuya solución requería el nuevo cálculo de variaciones, que había sido característicamente subestimado por Johann Bernoulli. Su solución publicada era por lo tanto inadecuada, dando por resultado el desprestigio desenfrenado de Jakob Bernoulli. No fue hasta muchos años después de la muerte de Jakob Bernoulli que Johann Bernoulli admitió la supremacía del cálculo de variaciones. En 1718, Johann Bernoulli produjo una solución elegante del problema isoperimétrico utilizando la metodología de Jakob Bernoulli, y este trabajo contenía las nociones tempranas para el cálculo moderno de variaciones.

El trabajo de Johann Bernoulli sobre la cicloide, en su descripción de la “fatídica curva del siglo XVII”, promulga su desarrollo de la integración de funciones racionales a través del método de las fracciones parciales. Un acercamiento algebraico formal a tales cálculos era típico de Johann Bernoulli, y su influencia en las técnicas comunes del cálculo se ha sentido con los tiempos modernos.

Después de la muerte de Jakob Bernoulli en 1705, Johann Bernoulli le sucedió en la cátedra de matemática en Basilea, al parecer una decisión motivada por su familia. Pronto se vio envuelto en la polémica disputa de prioridad entre Newton y Leibniz, y criticó abiertamente el apoyo de Taylor al método de fluxiones (el cálculo newtoniano). En debates y concursos posteriores, Bernoulli pudo analizar con éxito algunos problemas, como la trayectoria de la curva balística en el caso general, para la que el cálculo newtoniano era insuficiente. Después de la muerte de Newton en 1727, Bernoulli sería reconocido como el principal matemático de Europa. En Basilea estudió mecánica teórica y mecánica aplicada, y en 1714 publicó su único libro, Théorie de la manoeuvre des vaisseaux. En este trabajo critica las teorías de navegación francesas y desarrolla el principio de velocidades virtuales, con aplicaciones a sistemas mecánicos conservadores. En otros trabajos investigó la transmisión del momento, el movimiento de los planetas y el fenómeno del barómetro luminoso.

Bernoulli fue sumamente honrado durante su vida, siéndole concedida la calidad de miembro de las academias de París, de Berlín, de Londres, de San Petersburgo y de Bolonia. Se benefició de un alto estatus social en Basilea, debido a sus conexiones maritales y la riqueza de la familia, y ocupó varias oficinas cívicas allí. Murió el 1 de enero de 1748, en Basilea. Su ingenio al resolver problemas matemáticos particulares lo convirtió en uno de los mejores matemáticos de su época. En términos de legado, no fue tan exitoso como su hermano Jakob Bernoulli, pero sin embargo dejó un influyente trabajo sobre mecánica y ecuaciones diferenciales.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

La familia Bernoulli produjo muchos matemáticos que contribuyeron a diversas ramas de la matemática como la probabilidad, el cálculo y la teoría de números, y Jakob Bernoulli fue el primer miembro de esa impresionante congregación. Su genio estaba en la inteligente solución de ciertos problemas muy específicos, muchos de los cuales cobraron relevancia para el mundo exterior.

Originarios de Amsterdam, los Bernoullis eran una próspera familia de comerciantes que habían emigrado a Basilea. Jakob Bernoulli nació el 27 de diciembre de 1654 en Basilea, hijo de Nikolaus Bernoulli, un magistrado de la ciudad, y Margaretha Schönauer, hija de un banquero. Jakob Bernoulli estaba destinado también a una carrera mercantil, pero sus proclividades para la investigación científica marcarían su destino por otro camino. Después de obtener el título de maestría en filosofía en 1671, pasó a recibir una licenciatura en teología cinco años después. Sin embargo, parece que Bernoulli tenía poco interés o predilección hacia el ministerio evangélico; ha sido descrito como obstinado y agresivo, con un complejo de inferioridad. Durante este tiempo estudió matemática y astronomía, aunque su padre trató de disuadirlo de ello. En 1676 llegó a Ginebra como profesor particular, y allí comenzó su diario científico llamado Meditationes; Llego viajó a Francia, donde pasó dos años aprendiendo las metodologías de la filosofía científica cartesiana. Un segundo viaje educativo a los Países Bajos e Inglaterra en 1681 lo puso en contacto con matemáticos contemporáneos. Como resultado, Bernoulli pronto formuló una teoría de cometas (1682) y gravedad (1683). De regreso a Basilea, Jakob comenzó a dar conferencias sobre mecánica de cuerpos sólidos y líquidos; envió informes de sus investigaciones a revistas científicas y, mientras tanto, trabajó con la Géométrie de René Descartes. Sus contribuciones en geometría y álgebra (mostró cómo un triángulo podía dividirse en cuatro partes iguales a través de dos rectas perpendiculares) fueron colocadas en un apéndice de la cuarta edición de la Géométrie.

Bernoulli presentó a continuación cuatro estudios de lógica formal, publicados en medio de una disputa, de 1684 a 1686, y su primer trabajo sobre probabilidad apareció en 1685. También estaba familiarizado con los escritos de John Wallis e Isaac Barrow sobre infinitesimales en óptica y problemas mecánicos, y de esta manera se introdujo al cálculo.

En 1684 Bernoulli se casó con Judith Stupanus, la hija de un rico farmacéutico. Uno de sus hermanos menores, Johann Bernoulli, comenzó a asistir a la Universidad de Basilea; como respondedor a los debates lógicos de Jakob Bernoulli, Johann Bernoulli obtuvo su maestría en artes en 1685. Estudió medicina formalmente, pero en secreto persiguió la matemática bajo la tutela de Jakob Bernoulli. La relación entre los dos hermanos resultaría dura, ya que sus personalidades similares llevaron a una implacable fricción y rivalidad.

En 1687 Bernoulli fue nombrado profesor de matemática en la Universidad de Basilea, y en este tiempo estudió y dominó el cálculo diferencial de Gottfried Wilhelm Leibniz; como resultado, en 1689 Bernoulli produjo una teoría de series infinitas, estableció la ley de los grandes números de la teoría de la probabilidad, y llamó la atención sobre la importancia de la inducción completa. El análisis de la solución de Christiaan Huygens al problema de la curva de descenso constante en un campo gravitatorio proporciona un excelente ejemplo del dominio de Bernoulli del cálculo leibniziano. Fue en este contexto donde apareció por primera vez el término integral. Posteriormente investigó la elasticidad a través de una simple ecuación diferencial (1694), y también investigó las espirales parabólica y logarítmica (1691). Su procedimiento de determinación de la línea focal de rayos paralelos incidentes de luz sobre un espejo semicircular consiste en generar una curva algebraica a través de la envolvente de sus círculos de curvatura. Esto condujo más adelante a una ecuación diferencial que describió la forma de una vela que era inflada por el viento (1692, 1695). Bernoulli trabajó cuidadosamente en una amplia gama de problemas antiguos y modernos, incluyendo la llamada ecuación diferencial de Bernoulli, utilizando las herramientas del cálculo diferencial con experta facilidad.

Las fricciones entre Jakob Bernoulli y Johann Bernoulli se hicieron cada vez más frecuentes, principalmente debido a su mutuo conflicto de personalidad. Aunque inferior a su hermano menor en términos de intuición y velocidad de pensamiento, la mente de Jakob Bernoulli podía penetrar más profundamente en un tema. Un famoso problema de 1696 propuesto por Johann Bernoulli, llamado braquistócrona, se refería a la determinación de una curva de descenso más rápido entre dos puntos. Jakob Bernoulli resolvió esto en 1697, y también corrigió la solución de Johann Bernoulli del problema isoperimétrico en 1701, que este último se negó a reconocer hasta mucho después de la muerte de Jakob Bernoulli. Su antipatía mutua pronto llevó a la crítica del trabajo de cada uno, y continuó la discusión a través de la imprenta de 1699 a 1700.

Los principales logros de Bernoulli radican en su inteligente análisis de problemas particulares de interés matemático, clásico y mecánico. Desarrolló una teoría de fenómenos naturales basada en la colisión de partículas de éter, discutió el punto central de oscilación y descubrió las propiedades de la resistencia de los cuerpos elásticos. El centro de gravedad de dos cuerpos en movimiento uniforme, la forma de un cordón estirado, un movimiento acelerado centralmente y el impulso colectivo de muchos choques son algunos de los problemas mecánicos que él consideró. En ingeniería, él trató el problema del puente levadizo en 1695, que consistía en determinar la curva de un peso deslizante que cuelga en un cable que sostiene el puente levadizo en equilibrio.

En Theory of Series (publicado en cinco disertaciones de 1682 a 1704), desarrolla series para pi y el logaritmo de 2, investigó el interés compuesto, las series exponenciales y las series armónicas. La obra más original de Bernoulli, Ars conjectandi, publicada póstumamente en 1713 contiene la teoría de combinaciones, las series exponenciales, los números de Bernoulli, el beneficio esperado de varios juegos de azar, la probabilidad como medida de confianza, y la ley de grandes números. Murió en Basilea, el 27 de diciembre de 1705, de tuberculosis.

Tal vez su contribución a la probabilidad es su legado más significativo, ya que este campo ha sido ampliamente desarrollado a partir de sus primeros esfuerzos. Ciertamente, él avanzó también en álgebra, cálculo infinitesimal, cálculo de variaciones, mecánica y series infinitas. Bernoulli fue ampliamente leído por generaciones posteriores de matemáticos, y es reconocido hoy por sus contribuciones al cálculo y la probabilidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »