Feeds:
Entradas
Comentarios

Posts Tagged ‘Jakob Bernoulli’

En la ola de esfuerzo que siguió al trabajo pionero de Sir Isaac Newton en mecánica, muchos matemáticos intentaron profundizar los aspectos matemáticos de la nueva ciencia. Jean d’Alembert se destacó como uno de estos intelectuales, que contribuyeron a la astronomía, a la mecánica de fluidos y al cálculo; fue uno de los primeros en darse cuenta de la importancia del límite en el cálculo.

Jean Le Rond d’Alembert nació en París el 17 de noviembre de 1717. Era el hijo ilegítimo de una famosa anfitriona de salón y un oficial de caballería llamado Destouches-Canon. Un artesano llamado Rousseau crió al joven d’Alembert, pero su padre supervisó su educación; asistió a una escuela jansenista, donde aprendió los clásicos, retórica y matemática. 

D’Alembert decidió seguir una carrera como matemático y comenzó a comunicarse con la Académie des Sciences en 1739. Durante los años siguientes escribió varios artículos sobre la integración de ecuaciones diferenciales. Aunque no tenía ningún entrenamiento formal en matemáticas superiores, d’Alembert estaba familiarizado con las obras de Newton, así como con las obras de Jakob Bernoulli y Johann Bernoulli.

En 1741 fue nombrado miembro de la Academia, y concentró sus esfuerzos en algunos problemas de mecánica racional. El Traité de dynamics fue el fruto de su trabajo, una obra científica significativa que formalizó la nueva ciencia de la mecánica. El largo prólogo revelaba la filosofía de d’Alembert del sensacionalismo (esta idea afirma que la percepción sensorial, no la razón, es el punto de partida para la adquisición del conocimiento). Desarrolló la mecánica a partir de los conceptos simples de espacio y tiempo, y evitó la noción de fuerza. D’Alembert también presentó sus tres leyes del movimiento, que trataban la inercia, la ley del paralelogramo del movimiento y el equilibrio. Cabe destacar que D’Alembert produjo demostraciones matemáticas para estas leyes.

El conocido principio de d’Alembert también fue introducido en este trabajo, que establece que cualquier movimiento restringido puede ser descompuesto en términos de su movimiento inercial y una fuerza de resistencia (o restricción). Él tuvo cuidado de no sobrevalorar el impacto de la matemática en la física -dijo que el rigor de la geometría estaba ligado a su sencillez. Puesto que la realidad es siempre más complicada que una abstracción matemática, es más difícil establecer su verdad. 

En 1744 produjo un nuevo volumen llamado Traité de l’équilibre et du mouvement des fluides (Tratado sobre el equilibrio y el movimiento de fluidos). En el siglo XVIII una gran cantidad de interés se centraba en la mecánica de fluidos, ya que los fluidos se utilizan para modelar el calor, el magnetismo y la electricidad. Su tratamiento fue diferente al de Daniel Bernoulli, aunque las conclusiones fueron similares. D’Alembert también examinó la ecuación de la onda, considerando los problemas de oscilación de cuerdas en 1747. Luego, en 1749, se volvió hacia la mecánica celeste, publicando las Recherches sur la précession des équinoxes et sur la nutation de l’axe de la terre que trataban el tema del cambio gradual de la posición de la órbita terrestre.

A continuación, d’Alembert compitió por un premio en la Academia Prusiana, pero culpó a Leonhard Euler por su fracaso. D’Alembert publicó su Essai d’une nouvelle théorie de la résistance des fluides  en 1752, en el que las ecuaciones diferenciales hidrodinámicas se expresaron primero en términos de un campo. La así llamada paradoja hidrodinámica se formuló aquí, es decir, que el flujo antes y detrás de una obstrucción debe ser el mismo, dando por resultado la ausencia de cualquier resistencia. D’Alembert no resolvió este problema, y hasta cierto punto se inhibió por su parcialidad hacia la continuidad; cuando surgían discontinuidades en las soluciones de ecuaciones diferenciales, él simplemente arrojaba la solución.

En la década de 1750, interesado en varios temas no científicos, d’Alembert se convirtió en el editor científico de la Enciclopedia. Más tarde escribió sobre temas de música, derecho y religión, presentándose como un ávido defensor de los ideales de la Ilustración, incluyendo un desprecio por el pensamiento medieval.

Entre sus contribuciones originales a la matemática, se destaca el test de la razón para la convergencia de una serie infinita; D’Alembert consideró las series divergentes como absurdas y las desatendió (esto difiere marcadamente del punto de vista de Euler). D’Alembert estaba prácticamente solo en su visión de la derivada como el límite de una función, y su énfasis en la importancia de la continuidad probablemente lo llevó a esta perspectiva. En la teoría de la probabilidad, d’Alembert estaba bastante discapacitado, siendo incapaz de aceptar las soluciones estándar de los problemas de juego.

D’Alembert era conocido por ser un hombre encantador e ingenioso. Nunca se casó, aunque vivió con su amante Julie de Lespinasse hasta su muerte en 1776. En 1772 se convirtió en el secretario de la Académie Française (Academia Francesa), y cada vez se volcó más hacia preocupaciones humanitarias. Sus últimos años fueron marcados por la amargura y la desesperación; murió en París el 29 de octubre de 1783.

Aunque fue bien conocido como preeminente científico y filósofo, los logros matemáticos de d’Alembert merecen un reconocimiento especial. Él dio grandes avances en la teoría de la mecánica en varias de sus ramas, contribuyendo a su formulación matemática y a la consideración de varios problemas concretos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

 

Read Full Post »

La historia del análisis en el siglo XVIII se puede seguir en las memorias oficiales de las academias y en los tratados expositivos publicados de forma independiente. En las primeras décadas del siglo, el cálculo se cultivó en una atmósfera de entusiasmo intelectual con matemáticos aplicando los nuevos métodos a una serie de problemas de la geometría de las curvas. Los hermanos Johann y Jakob Bernoulli mostraron que la forma de un alambre liso largo del cual una partícula desciende en el menor tiempo es la cicloide, una curva trascendental muy estudiada en el siglo anterior.

Jacob and Johann Bernoulli

Trabajando en un espíritu de rivalidad aguda, los dos hermanos llegaron a ideas que más tarde se convertirían en el cálculo de variaciones. En su estudio de la rectificación de la lemniscata, una curva en forma de cinta descubierta por Jakob Bernoulli en 1694, Giulio Carlo Fagnano (1682-1766) introdujo ingeniosas transformaciones analíticas que sentaron las bases de la teoría de las integrales elípticas. Nikolaus I Bernoulli (1687-1759), sobrino de Johann y Jakob, demostró la igualdad de las derivadas parciales mixtas de segundo orden e hizo importantes contribuciones a las ecuaciones diferenciales mediante la construcción de trayectorias ortogonales a familias de curvas. Pierre Varignon (1654-1722), Johann Bernoulli y Jakob Hermann (1678-1733) continuaron desarrollando la dinámica analítica, al adaptar el cálculo de Leibniz a la mecánica inercial de los Principia de Newton.

Concepciones y problemas geométricos predominaron en los comienzos del cálculo. Este énfasis en la curva como objeto de estudio proporcionó coherencia a lo que fue una colección dispar de técnicas analíticas. Con su continuo desarrollo, el cálculo gradualmente abandonó sus orígenes en la geometría de las curvas, y surgió un movimiento para establecer el tema sobre una base puramente analítica. En una serie de libros de texto publicados a medidos del siglo, el matemático suizo Leonhard Euler llevó a cabo de forma sistemática la separación del cálculo de la geometría. En su Introductio in Analysin Infinitorum de 1748 hizo de la noción de función el concepto central de la organización del análisis:

Una función de una cantidad variable es una expresión analítica compuesta de cualquier manera por la variable y de números o cantidades constantes.

El enfoque analítico de Euler es ilustrado por su introducción de las funciones seno y coseno. Las tablas trigonométricas habían existido desde la antigüedad, y las relaciones entre senos y cosenos se utilizaban comúnmente en la astronomía matemática. A comienzos del cálculo los matemáticos habían derivado de su estudio de fenómenos mecánicos periódicos la ecuación diferencial

\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}

y fueron capaces de interpretar geométricamente su solución en términos de líneas y ángulos en el círculo. Euler fue el primero en introducir las funciones seno y coseno en forma de cantidades cuya relación con otras cantidades podían ser estudiadas de forma independiente de cualquier diagrama geométrico.

El enfoque analítico de Euler para el cálculo recibió el apoyo de su contemporáneo más joven Joseph-Louis Lagrange, quien, tras la muerte de Euler en 1783, lo reemplazó como el líder de la matemática europea.

Read Full Post »

La idea esencial de Newton y Leibniz era utilizar el álgebra cartesiana para sintetizar resultados anteriores y desarrollar algoritmos que pudieran ser aplicados de manera uniforme a una amplia clase de problemas. El período de formación de las investigaciones de Newton fue 1665-1670, mientras que Leibniz trabajó unos años más tarde, en la década de 1670. Sus contribuciones difieren en su origen, el desarrollo y la influencia, y es necesario tener en cuenta cada uno por separado. En la entrada anterior  recorrimos muy brevemente el  aporte de Newton, y aquí nos dedicaremos a Leibniz.

El interés de Leibniz en la matemática se despertó en 1672 durante una visita a París, donde el matemático holandés Christiaan Huygens le presentó su trabajo sobre la teoría de curvas. Bajo la tutela de Huygens, Leibniz se sumergió en los próximos años al estudio de la matemática. Investigó las relaciones entre la suma y la diferenciación de las sucesiones finitas e infinitas de números. Después de leer las conferencias geométricas de Barrow, ideó una regla de transformación para calcular cuadraturas, obteniendo la famosa serie infinita de π/4:

\frac{\pi }{4}=\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots

Leibniz estaba interesado en cuestiones de lógica y de notación, de cómo construir un characteristica universalis para la investigación racional. Después de una considerable experimentación llegó a finales de la década de 1670 a un algoritmo basado en los símbolos d y \int. El primero publicó su investigación sobre el cálculo diferencial en 1684 en un artículo en el Acta Eruditorum, Nova Methodus pro Maximis et Minimis, Itemque Tangentibus,
qua nec Fractas nec Irrationales Quantitates Moratur, et Singulare pro illi Calculi Genus
. En este artículo presenta el diferencial dx, respetando las reglas d(x+y)=dx+dyd(xy)=xdy+ydx e ilustró su cálculo con unos pocos ejemplos. Dos años después publicó un segundo artículo, On a Deeply Hidden Geometry, en el cual presenta y explica el símbolo \int para la integración. Hizo hincapié en el poder de su cálculo para investigar curvas trascendentales, la misma clase de objetos “mecánicos” que Descartes había creído más allá del poder del análisis, y derivó una fórmula analítica sencilla para la cicloide.

Leibniz continuó publicando resultados sobre el nuevo cálculo en el Acta Eruditorum y comenzó a explorar sus ideas en una extensa correspondencia con otros estudiosos. En pocos años, había atraído a un grupo de investigadores para promulgar sus métodos, incluyendo a los hermanos Johann Bernoulli y Jakob Bernoulli en Basilea y al sacerdote Pierre Varignon y Guillaume-François-Antoine de l’Hospital en París. En 1700 convenció a Federico Guillermo I de Prusia para establecer la Sociedad de Ciencias de Brandenburg (más tarde rebautizada como Academia de Ciencias de Berlín), con él mismo nombrado como presidente de por vida.

Read Full Post »