Feeds:
Entradas
Comentarios

Posts Tagged ‘Jakob Bernoulli’

Seki Takakazu fue una figura singular en la historia de la matemática: en un momento en que la actividad matemática en Japón era bastante limitada, Seki hizo sorprendentes descubrimientos, rivalizando con los de matemáticos occidentales como Gottfried Leibniz. Sus logros son notables a la luz del hecho de que Seki no podía beneficiarse de una cultura matemática y colegas con quienes intercambiar ideas.

Seki nació en marzo de 1642 en Fujioka, Japón. Su familia era de la casta samurai, pero una familia de la nobleza, conocida como Seki Gorozayemon, adoptó a Seki. Posteriormente, fue identificado por este apellido adoptado. Seki fue un niño prodigio en matemática. Un sirviente de la casa le presentó el tema cuando tenía nueve años, y Seki fue autodidacta a partir de entonces. Cuando se convirtió en adulto, construyó una biblioteca de libros matemáticos chinos y japoneses, y gradualmente fue reconocido como un experto: se lo conoció como el “sabio aritmético”. Atrajo a un grupo de alumnos y provocó un crecimiento en la actividad matemática de Japón.

Seki sirvió como examinador de cuentas para el señor de Koshu, y cuando su maestro fue ascendido, se convirtió en un samurai shogunato en 1704. Más tarde, fue nombrado maestro de ceremonias en la casa del shogun.

El trabajo matemático de Seki, basado en antiguos matemáticos chinos, representó un avance considerable en el conocimiento. Publicó Hatsubi Sampo en 1674, un trabajo donde trató y resolvió ecuaciones algebraicas. En su exposición, Seki se muestra a sí mismo como un maestro cuidadoso y minucioso, explicando esto su popularidad entre los alumnos. En 1683 estudió los determinantes de una matriz, tema que no fue examinado en Occidente hasta una década más tarde, cuando Leibniz los usó para resolver ciertos problemas. Los llamados números de Bernoulli, llamados así por Jakob Bernoulli, fueron investigados anteriormente por Seki. Utilizó el concepto de números negativos para resolver ecuaciones, pero no tuvo conocimiento de los números complejos. Seki también investigó los cuadrados mágicos, siguiendo el trabajo de Yang Hui, y utilizó el método de Newton-Raphson para resolver ecuaciones algebraicas, descubierto independientemente de Sir Isaac Newton. Su trabajo sobre ecuaciones diofánticas también es digno de consideración. 

Poco más se sabe de Seki, excepto que murió el 24 de octubre de 1708 en Tokio, Japón. Es difícil determinar hasta qué punto su escuela estaba familiarizada con el cálculo, pero parece que Seki hizo algunos progresos en esta área. Esto es sorprendente, ya que Japón no tenía la tradición histórica que los europeos podían reclamar, es decir, las obras geométricas de las civilizaciones griegas y árabes anteriores. Seki debe ser visto en el linaje de los matemáticos chinos, a pesar de que era japonés, ya que estudió a fondo las matemáticas anteriores del continente.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Uno de los temas más debatidos en la historia de la matemática fue la cuestión de la prioridad en el descubrimiento del cálculo infinitesimal. Sir Isaac Newton y Gottfried Leibniz hicieron descubrimientos notables en el cálculo diferencial, y los seguidores de cada una de estas personalidades fomentaron un feo argumento sobre a quién se le debía acreditar el descubrimiento original. Cualquiera que sea la verdad, no hay duda de que Leibniz fue uno de los más grandes matemáticos de su tiempo, lo que se manifiesta no solo por la amplitud y profundidad de sus ideas originales, sino también por su capacidad para organizar los pensamientos de los demás de manera más eficiente. 

Gottfried Wilhelm von Leibniz nació el 1 de julio de 1646 en Leipzig, Alemania, hijo de Friedrich Leibniz, profesor de la Universidad de Leipzig, y de Katherina Schmuck. La familia era de origen eslavo, pero había vivido en Alemania durante varias generaciones. Leibniz fue un estudiante precoz, y sus maestros inicialmente intentaron contener su curiosa naturaleza. Después de que su padre muriera en 1652, se le permitió el acceso a la biblioteca de éste. Así, Leibniz fue autodidacta, de modo que cuando ingresó en la Universidad de Leipzig a los 15 años ya dominaba los clásicos. Su voraz apetito por la lectura lo acompañó durante toda su vida, y Leibniz pudo digerir una gran variedad de temas académicos. 

Leipzig se mantenía fiel a la tradición aristotélica no científica, de modo que Leibniz estudió por primera vez geometría euclidiana en la Universidad de Jena, lugar al que asistió después de 1663. Completó su doctorado en Altdorf en 1666, y pronto entró al servicio de un noble del Sacro Imperio Romano. Leibniz inició una correspondencia con muchas sociedades científicas, y comenzó a trabajar en una máquina para calcular que finalmente se completó en 1674. En 1671 viajó a París en una misión diplomática diseñada para prevenir la invasión de Renania por parte del monarca francés. Este proyecto no tuvo éxito, pero mientras estaba en París Leibniz desarrolló una amistad de por vida con Christiaan Huygens

Durante estos años, Leibniz amplió su instrucción anterior en matemática, desarrollando reglas de cálculo para diferencias finitas. Las continuas negociaciones de paz lo llevaron a Londres en 1673, donde fue admitido en la Royal Society y se familiarizó con las obras de Isaac Barrow. En este momento, Leibniz recibió indicios del trabajo de Newton sobre el cálculo infinitesimal, y pronto desarrolló sus propias técnicas computacionales y su notación. En 1674, Leibniz efectuó la cuadratura aritmética del círculo. 

El anterior patrón de Leibniz había muerto, y en 1676 asumió una nueva posición en Hannover, actuando como bibliotecario e ingeniero. Unos años más tarde se convirtió en consejero de la corte y se ocupó activamente en una investigación genealógica para el duque. Mientras tanto, Leibniz había comenzado a investigar álgebra y había obtenido varios resultados importantes para 1675, como la determinación de funciones simétricas y un algoritmo para la solución de ecuaciones algebraicas de grado superior. Conjeturó que la suma de dos números complejos conjugados es siempre un número real. Abraham de Moivre más tarde demostró este resultado. Leibniz también investigó progresiones de números primos y series aritméticas. Aprendió de la trascendencia de las funciones logarítmicas y trigonométricas y sus propiedades básicas, e investigó algunos problemas de probabilidad. 

Pero su mayor descubrimiento se produjo a finales de 1675, cuando introdujo la noción de límite en el cálculo infinitesimal. Este método, y su correspondiente notación, facilitaron una mayor difusión y comprensión de la nueva matemática. Newton menospreció su trabajo, ya que no resolvió ningún problema nuevo; pero la fortaleza del sistema de Leibniz fue su claridad y abstracción de los principios generales del cálculo. Leibniz procedió a resolver varias ecuaciones diferenciales importantes con sus técnicas. Muchos de sus descubrimientos de este tiempo se escribieron solo como notas e ideas en cartas, y no se desarrollaron ni publicaron sistemáticamente hasta 1682. En los próximos años presentó algunos documentos al público que trataron la cuadratura aritmética, la ley de la refracción, integraciones algebraicas y cálculo diferencial. 

En 1687, Leibniz viajó por Alemania para continuar su investigación genealógica. También visitó Italia y finalmente completó su proyecto en 1690; sus esfuerzos ayudaron a elevar el ducado de Hannover a estado electoral en 1692. Leibniz atrajo la atención de la comunidad científica a través de su ataque a la dinámica cartesiana en 1686. De esta controversia, varias cuestiones vinculadas al tema fueron planteadas y resueltas por Leibniz, Huygens y Jakob Bernoulli, incluidos los famosos problemas de la catenaria (1691) y la braquistócrona (1697). Una característica de Leibniz fue que reveló solo sus resultados y no sus métodos. De hecho, a menudo escribía sus artículos apresuradamente. A pesar de algunos errores, su trabajo resultó notable por la originalidad de sus ideas, algunas de las cuales fueron precursoras del trabajo de Evariste Galois sobre la solubilidad de las ecuaciones. Leibniz definió el centro de curvatura, desarrolló el método de coeficientes indeterminados en la teoría de las ecuaciones diferenciales y construyó series de potencias para funciones exponenciales y trigonométricas. 

En los últimos años del siglo XVII, gran parte del tiempo de Leibniz estuvo abocado a la controversia con Newton sobre el descubrimiento del cálculo. Los seguidores de Newton sostenían que Leibniz había plagiado sus ideas directamente de Newton y Barrow. Leibniz se defendió a sí mismo en 1700, e hizo hincapié en que ya había publicado su material sobre cálculo diferencial en 1684. El feo debate público se extendió de un lado a otro, impulsado por consideraciones nacionalistas, hasta que la Royal Society realizó una investigación parcial, que falló a favor de Newton, en 1712. Este veredicto fue aceptado sin cuestionamientos durante aproximadamente 140 años. Ahora se piensa que Leibniz desarrolló sus métodos independientemente de Newton. 

Leibniz viajó a Berlín en 1700 y fundó la Academia de Berlín, convirtiéndose en presidente vitalicio. Trabajó para realizar ciertas reformas políticas y religiosas, y fue nombrado concejal de Rusia en 1712. Pasó los últimos años de su vida intentando completar la historia de la casa de Brunswick mientras estaba aquejado de gota. Murió el 14 de noviembre de 1716. Además de sus notables contribuciones a la matemática, Leibniz investigó sobre física, lógica y filosofía. Escribió sobre temas tan diversos como dogma religioso y movimiento planetario, y desarrolló un cálculo lógico que permitiría la certeza de las deducciones a través de un sistema algebraico. En este aspecto, Leibniz fue el antecesor de muchos otros lógicos formales, como George Boole y Friedrich Ludwig Gottlob Frege

Su mayor talento como matemático fue su capacidad para penetrar los pensamientos de otros científicos y presentarlos de una manera coherente, adecuada para el cálculo. La notación que desarrolló para el cálculo diferencial es el ejemplo por excelencia de este poder: percibió asiduamente que la noción de límite era crucial para el estudio del cálculo infinitesimal. Los detalles, para Leibniz, no eran tan importantes como los conceptos abstractos subyacentes. Su legado en matemática continúa hasta nuestros días.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

El siglo XVIII fue testigo del desarrollo de varias ideas matemáticas del siglo XVII: el cálculo fue un ejemplo importante. Leonhard Euler fue excepcional entre sus pares no solo por la amplitud y profusión de su obra, sino también por su gran originalidad; fundó gran parte de la teoría de números, definió el concepto moderno de función y formuló una teoría general para el cálculo de variaciones. Su renombre y virtuosismo fueron tales que el siglo XVIII a veces se conoce como la “Era de Euler”. 

Leonhard Euler nació en Basilea el 15 de abril de 1707. Su padre, Paul Euler, era un ministro protestante, y su madre, Margarete Brucker, era hija de un ministro; esta base religiosa permaneció con Euler a lo largo de su vida. El padre de Euler, que se había interesado en la matemática al haber asistido a las conferencias de Jakob Bernoulli en la Universidad de Basilea, educó a su hijo en sus primeros años. Debido a que su Gymnasium no enseñaba matemática, Euler estudió en privado con un matemático aficionado, y mostró un talento notable para alguien de su edad. En 1720 ingresó en la Universidad de Basilea y pronto estuvo bajo la guía de Johann Bernoulli. En 1722 recibió su licenciatura en artes, y un año más tarde su maestría en filosofía; a los 16 años, se unió al departamento de teología. 

Sin embargo, la fuerza de Euler estaba en la matemática, y pronto abandonó su ambición de ser ministro. Por esta época comenzó su propia búsqueda en la matemática y publicó un artículo sobre trayectorias recíprocas algebraicas. Había pocas oportunidades en Suiza para matemáticos jóvenes, por lo que Euler aceptó una oferta para unirse a la nueva Academia de Ciencias de San Petersburgo en 1727. Su nombramiento oficial fue como adjunto de fisiología, aunque se le permitió trabajar en matemática. Euler se convirtió en profesor de física en 1731 y en profesor de matemática en 1733; la atmósfera en la joven academia fue estimulante para Euler, quien interactuó con Jakob Hermann, Daniel Bernoulli y Christian Goldbach. 

La vida de Euler estuvo marcada por su notable diligencia y actividad. Su investigación matemática fue informada en las sesiones de la academia; mientras tanto, participó en la formación de científicos rusos, así como en el estudio del territorio ruso (Euler ayudó en la construcción de mapas geográficos) y en el desarrollo de nueva tecnología (Euler estudió problemas de construcción naval y de navegación). Pero sus contribuciones a la matemática fueron prolíficas: Euler preparó más de 80 obras en sus primeros 14 años en San Petersburgo. 

Muchas de sus mejores ideas fueron formuladas en su juventud, incluso en Basilea, y se desarrollaron mucho después. Debido a su voluminosa correspondencia con otros científicos, los descubrimientos de Euler a menudo se hicieron públicos antes de que fueran publicados; esto le trajo una gran cantidad de fama. En 1733 se casó con Katharina Gsell, y pronto tuvo dos hijos. Su tranquila vida fue estropeada solamente por la pérdida de la visión de su ojo derecho en 1738; según Euler, esto se debió a la sobrecarga de su trabajo cartográfico. Sin embargo, en 1740 la situación política en Rusia se volvió inestable, y Euler aceptó una oferta para trabajar en la Sociedad de Ciencias de Berlín. 

Euler se quedó en Berlín durante 25 años, tiempo durante el cual fue bendecido con muchos más hijos. Durante este período, trabajó en las academias de Berlín y San Petersburgo. Fue director de la Sociedad de Ciencias de Berlín, que transformó en gran medida. Además de las numerosas tareas administrativas, se ocupó de varios problemas prácticos, como la corrección del nivel del canal de Finow. Consultó con el gobierno sobre problemas de seguros, pensiones e hidráulica, e incluso organizó algunas loterías estatales. Mientras tanto, Euler recibió una pensión de la Academia de San Petersburgo y, a cambio, editó el diario de la academia, le informó sobre nuevas ideas científicas y supervisó competiciones. Euler recibió 12 premios de la Académie des Sciences de París de 1738 a 1772. 

El período de Berlín fue fructífero, ya que Euler produjo más de 380 obras, algunas de las cuales fueron extensas, sobre temas como el cálculo de variaciones, el cálculo de órbitas, balística, análisis, movimiento lunar y cálculo diferencial. Sus famosas Lettres à une princesse d’Allemagne sur buts sujets de physique et de philosophie (Cartas a una princesa alemana sobre diversos temas de física y filosofía) se escribieron de manera popular y se convirtieron en un gran éxito en Europa. Euler participó en muchos debates académicos sobre temas como la religión de la razón pura expuesta por Gottfried Leibniz, y el principio de mínima acción. 

Después de 1759, la relación de Euler con el rey Federico de Prusia se deterioró, y finalmente regresó a San Petersburgo en 1766. Poco después de su regreso, una breve enfermedad lo dejó completamente ciego; esto dificultó su capacidad de investigar, pero con la ayuda de asistentes pudo dictar sus pensamientos y así continuar su trabajo. El único cambio parece ser que sus artículos se volvieron más concisos, y la mitad del total de sus obras se produjo después de 1765. Su memoria (podía recitar literalmente la Eneida de Virgilio) permaneció impecable, y continuó teniendo ideas originales. La actividad de Euler en la academia no disminuyó cuando murió el 18 de septiembre de 1783, de una hemorragia cerebral.   

Euler fue uno de los matemáticos más importantes desde Sir Isaac Newton. Estaba profundamente interesado en las aplicaciones, pero desarrollaría la matemática pertinente a niveles profundos de abstracción y generalidad. Su tema principal fue el análisis, contribuyendo al cálculo de variaciones, la teoría de las ecuaciones diferenciales, las funciones de una variable compleja y la teoría de funciones especiales. Se le deben muchas convenciones y notaciones modernas, como el símbolo f(x) para el valor de una función y i para la raíz cuadrada de -1. 

En teoría de números, a Euler le preocupaba la teoría de la divisibilidad, introduciendo la llamada función de Euler, que cuenta la cantidad de divisores de un entero dado. Estos estudios lo llevaron al descubrimiento de la ley de la reciprocidad cuadrática, cuya prueba completa fue luego establecida por Carl Friedrich Gauss. Euler investigó las descomposiciones de números primos como combinaciones lineales de cuadrados, y trabajó en el análisis diofántico a través de fracciones continuas. Sus métodos eran algebraicos, pero Euler fue el primero en introducir métodos analíticos a la teoría de números, en particular, dedujo una famosa identidad que relacionaba sumas de cuadrados recíprocos con un producto de números primos, que fue un primer paso en el estudio de la función zeta de Riemann. Euler estudió varias constantes matemáticas, como e y pi, así como la constante de Euler (que surge en el estudio de la serie armónica divergente). 

Euler enunció el teorema que dice que un polinomio algebraico de grado n tiene n raíces de la forma a+bi, que ahora se conoce como el teorema fundamental del álgebra. Su prueba de 1751 tuvo algunas omisiones, que luego fueron corregidas por Gauss. Euler también intentó derivar una fórmula exacta para las raíces del polinomio de quinto grado, y sus fallas lo llevaron a métodos de aproximación de análisis numérico. 

Aunque muchos matemáticos habían estudiado series infinitas, Euler fue inusualmente exitoso en su cálculo, obteniendo fórmulas simples para sumas de recíprocos de potencias pares de enteros. A través de estos estudios, Euler estudió funciones especiales (como las funciones de Bessel) y descubrió la constante de Euler para la aproximación de la serie armónica. Hizo un gran uso de las series de potencias e introdujo series trigonométricas antes que Jean Baptiste Joseph Fourier como herramienta analítica. Euler creía que las series divergentes podían ser útiles, y este esfuerzo llegaría a buen término mucho más tarde, en el siglo XX. 

Euler presentó la idea de que el análisis matemático es el estudio de las funciones; para este fin, definió más claramente el concepto de función, que se aproxima mucho a la noción moderna. A través de la consideración del logaritmo de los números negativos, Euler llegó a un entendimiento de la exponenciación de números imaginarios, derivando muchos hechos elementales cruciales. Avanzó en el conocimiento de los números complejos, descubriendo las ecuaciones diferenciales que relacionan las partes real e imaginaria de una función analítica. Euler aplicó sus técnicas al cálculo de integrales reales.  

También realizó numerosos descubrimientos en el cálculo diferencial e integral, derivando reglas de sustitución, validando el intercambio de derivadas parciales y fundando el concepto de integrales múltiples. Como resultado de los muchos casos especiales y técnicas de integración que empleó, se descubrieron las funciones beta y gamma, que son útiles en física. Euler hizo grandes contribuciones al campo de las ecuaciones diferenciales, incluido el método de variación de constantes, así como el uso de curvas características. Algunas de las aplicaciones de este trabajo incluyen problemas de cuerdas vibrantes, hidrodinámica y el movimiento del aire en las tuberías. 

Sus estudios en el cálculo de variaciones lo llevaron a la ecuación diferencial de Euler, y su exposición del tema se convirtió en un clásico. Euler fue el primero en formular los principales problemas de este tema y los principales métodos de solución. En geometría, Euler investigó la trigonometría esférica y fundó una teoría de líneas sobre una superficie, uno de los pasos iniciales hacia el moderno tema de la geometría diferencial. Analizó la curvatura de una superficie en términos de la curvatura de las curvas principales embebidas e introdujo las coordenadas gaussianas, que se usaron ampliamente en el siglo XIX. 

Euler también fue el primer autor en topología, resolviendo el famoso enigma de siete puentes de Königsberg; estudió poliedros, obteniendo lo que más tarde se conocería como la característica de Euler, una fórmula que relaciona su número de aristas, caras y vértices. 

Además de estas contribuciones a la matemática pura, Euler trabajó en mecánica, astronomía y óptica. Euler sistematizó la mecánica, introduciendo métodos analíticos que simplificaron enormemente el tema. Estudió mecánica celeste y elasticidad, derivando la famosa fórmula de pandeo de Euler, utilizada para determinar la fuerza de las columnas. En mecánica de fluidos, estudió las posiciones de equilibrio y presentó tres obras clásicas sobre el movimiento de los fluidos incompresibles; Euler también mejoró el diseño de la turbina hidráulica. 

En astronomía, Euler estaba interesado en la determinación de órbitas de cometas y planetas, en la teoría de la refracción y en la naturaleza física de los cometas. Presentó una extensa teoría lunar, que permitía un cálculo más preciso de la posición longitudinal de un barco en el mar. Euler ayudó a la física matemáticamente (es decir, al introducir muchas técnicas de análisis para comprender mejor ciertos problemas). De hecho, se le acredita como fundador de la física matemática. Estudió también la óptica, construyendo una teoría de la luz no como partícula que veía la iluminación como el producto de ciertas oscilaciones en el éter ambiental.  

Euler fue un hombre humilde, pero también uno de los mejores científicos y matemáticos de todos los tiempos, y especialmente del siglo XVIII; fue reconocido por sus compañeros como un genio sobresaliente. Su investigación matemática ha estimulado una enorme cantidad de actividad posterior, y muchas de sus ideas se adelantaron a su tiempo.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »