Joseph Lagrange ha sido descrito como el último gran matemático del siglo XVIII. Sus ideas matemáticas fueron altamente originales e influyentes, allanando el camino para los estudios más abstractos del siglo XIX. Quizás su contribución más importante radique en su formulación mecanicista del universo, dando fórmulas matemáticas exactas para las leyes que gobiernan el movimiento y la mecánica.
Joseph-Louis Lagrange nació el 25 de enero de 1736 en Turín, Italia. Su nombre al nacer fue Giuseppe Lodovico Lagrangia, pero más tarde adoptó la formulación francesa Joseph-Louis Lagrange. El padre de Lagrange fue Giuseppe Francesco Lodovico Lagrangia, y su madre fue Teresa Grosso. Su familia era mayoritariamente de descendencia francesa, aunque la madre de Lagrange era hija única de un médico de Turín. Lagrange fue el mayor de 11 hijos, la mayoría de los cuales murieron durante la infancia. El padre de Lagrange ocupó el cargo de tesorero de la Oficina de Obras Públicas y Fortificaciones en Turín. A pesar de esta prestigiosa posición la familia vivía modestamente.
Lagrange originalmente estaba orientado a una carrera en derecho, pero una vez que comenzó a estudiar física reconoció su propio talento para la matemática. Al principio desarrolló un interés por la geometría, pero a los 17 años se volcó hacia el análisis. Su primer artículo (1754) desarrolló un cálculo formal, dándose cuenta luego que Gottfried Leibniz ya conocía. Posteriormente comenzó a trabajar en el problema de la tautócrona e inició el desarrollo de su cálculo de variaciones. Esta fue esencialmente una aplicación de las ideas del cálculo a conjuntos de funciones, en lugar de considerar una sola función.
En 1755 Lagrange envió sus primeros resultados sobre este nuevo cálculo de variaciones a Leonhard Euler. Lagrange desarrolló esta pieza original y muy útil de matemática cuando tenía sólo 19 años. Al final de su vida consideró que fue su contribución más importante. Euler expresó su interés en el novedoso método para resolver problemas de optimización y, como resultado de su creciente renombre, Lagrange fue nombrado profesor en la Royal Artillery School en Turín en 1755. Esta posición era mal paga, y Lagrange se sintió poco apreciado por sus conciudadanos, lo que le llevó a abandonar posteriormente Italia.
Al año siguiente, Lagrange aplicó su método a la mecánica. Fue capaz de describir la trayectoria de un objeto sujeto a ciertas fuerzas como solución a un problema de optimización en el cálculo de variaciones. Esta elegante formulación matemática de la mecánica revolucionaría el estudio de los sistemas dinámicos.
Mientras tanto, se fundó la Real Academia de Ciencias de Turín, a la que Lagrange realizó numerosas contribuciones fundamentales durante la próxima década. Sus trabajos desde este período de tiempo hasta alrededor de 1770 incluyen material sobre el cálculo de variaciones, ecuaciones diferenciales, cálculo de probabilidades, mecánica celeste y movimiento de fluidos. Desarrolló la técnica de integración por partes, tan familiar para los estudiantes de cálculo, y ganó varios premios ofrecidos por la Academia de Ciencias de París, por su destacada labor sobre los movimientos de la Luna y otros cuerpos celestes. El sistema de mecánica de Lagrange estableció el principio de acción mínima: que una partícula elige la trayectoria que minimiza la energía, base de la dinámica. Muchos matemáticos franceses, incluidos Jean Le Rond d’Alembert y Pierre-Simon Laplace, reconocieron la excelente calidad de su trabajo.
En 1763 Lagrange fue invitado a París, donde fue recibido con entusiasmo por la comunidad matemática del lugar. D’Alembert intentó asegurarle a Lagrange una posición superior en Turín, pero las promesas no se materializaron. Como resultado, Lagrange aceptó una oferta para cubrir el puesto vacante de Euler en Berlín en 1766, lo que inició el segundo período científico de la vida de Lagrange.
Lagrange se hizo amigo de Johann Heinrich Lambert y de Johann Bernoulli, y fue nombrado director de la Academia de Ciencias de Berlín. No tenía deberes de enseñanza, lo que le permitió centrarse en su investigación matemática. Lagrange se casó con su prima, Vittoria Conti, en 1767, y aunque no tuvieron hijos estuvieron juntos durante 16 años, hasta que la salud de Vittoria disminuyó y murió en 1783 después de una prolongada enfermedad.
Mientras estuvo en Berlín, Lagrange disfrutó de la participación continua y del éxito en las competiciones de París, haciendo contribuciones sobresalientes al problema de los tres cuerpos. Además de estos concursos públicos, Lagrange desarrolló su propio trabajo personal sobre mecánica celeste, publicando varios artículos importantes desde 1782 en adelante. Mientras tanto, ya había comenzado a investigar ciertos problemas en álgebra, resolviendo completamente una célebre ecuación indeterminada planteada por Pierre de Fermat en 1768. Sobre la base del trabajo anterior de Euler, Lagrange demostró que cada entero se puede expresar como la suma de, como máximo, cuatro cuadrados perfectos (1770); caracterizó los números primos a través de un criterio de divisibilidad y desarrolló aún más la teoría de las formas cuadráticas (1775), abriendo vías de investigación futura para Carl Friedrich Gauss y Adrien-Marie Legendre. Dio una exposición del método de descenso infinito, inspirado en Fermat, y utilizó el método de las fracciones continuas.
Hizo una contribución particularmente importante al análisis en 1770, cuando dio un desrrollo de la serie que involucraba las raíces de una ecuación dada, que tuvo útiles aplicaciones científicas. La fórmula de Lagrange demostró ser de gran interés para los matemáticos, ya que la mayoría de los grandes analistas del siglo XIX, incluido Augustin-Louis Cauchy, estudiaron las consecuencias de esta idea. Este trabajo, en conjunto con el de Alexandre Vandermonde, revela el concepto del grupo de permutaciones, que luego sería desarrollado por Evariste Galois.
Lagrange también contribuyó a la mecánica de fluidos en la década de 1780, a las raíces imaginarias de las ecuaciones algebraicas en la década de 1770 y al análisis infinitesimal de 1768 a 1787. Su trabajo sobre la integración de ecuaciones diferenciales, que se extiende sobre las ideas de Euler, representa un primer paso en la teoría de las funciones elípticas, que atraerían mucho interés en el siglo XIX. También se debe mencionar su trabajo sobre ecuaciones diferenciales parciales, ya que condujo a la resolución de varios problemas. Su trabajo en probabilidad es de menor importancia.
Las considerables contribuciones de Lagrange a la mecánica estaban dispersas en varias publicaciones, y las resumió en un tratado de 1788. Por esta época Lagrange se había establecido en París. Aunque Turín había intentado atraer a Lagrange para que regresara a su ciudad natal, no se sintió ansioso por abandonar Berlín hasta la muerte de su esposa en 1783. Pero los matemáticos franceses, que solicitaron agresivamente su presencia, lograron atraer a Lagrange. En 1787 se convirtió en miembro de la Academia de Ciencias, donde superó la caótica agitación política de las décadas posteriores.
En 1792 Lagrange se casó con Renée-Françoise-Adélaïde Le Monnier, con quien también tuvo un feliz matrimonio. Durante el comienzo de la fase parisina de su carrera, la actividad de Lagrange se redujo en cierta medida. Participó activamente en la Asamblea Constituyente de 1790 sobre la estandarización de pesos y medidas, y más tarde enseñó análisis en la recién fundada École Polytechnique hasta 1799. Después de que Napoleón ascendió al poder, Lagrange fue nombrado gran oficial de la Legión de Honor y en 1808 obtuvo un cargo en el imperio. Murió la mañana del 11 de abril de 1813 en París. Las universidades de toda Europa anunciaron su muerte, y Laplace dio su oración fúnebre.
Lagrange hizo extensas contribuciones a muchas áreas de la matemática; sus trabajos a menudo abrían nuevas áreas de investigación (como las funciones elípticas, las formas cuadráticas y el cálculo de variaciones). Lo más significativo fue su formulación de la mecánica, a veces llamada mecánica lagrangiana, que esencialmente mecanizó la comprensión del universo físico. Este demostró ser un modo poderoso e influyente de describir el mundo conocido y continúa afectando la investigación matemática en la actualidad.
Fuente bibliográfica:
- McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.