Feeds:
Entradas
Comentarios

Posts Tagged ‘Johann Bernoulli’

El campo de la astronomía se había desarrollado rápidamente en el siglo XIX, y la matemática conservaba su importancia vital para esta ciencia hermana. Friedrich Bessel no sólo se convirtió en uno de los más grandes astrónomos, calculando con precisión varias distancias astronómicas y siendo calificado como el fundador de la escuela alemana de astronomía práctica, sino que también desarrolló teorías matemáticas sobresalientes para explicar las perturbaciones de las órbitas planetarias. 

El 22 de julio de 1784, Friedrich Bessel nació en Minden, Alemania. Su padre era un funcionario público de esa ciudad, y su madre era hija de un ministro. Bessel tenía una familia grande, conformada por seis hermanas y dos hermanos. Bessel asistió al Gymnasium (instituto alemán) en Minden, pero después de cuatro años lo abandonó para convertirse en aprendiz de comerciante. Mientras estaba en la escuela, tuvo una inclinación hacia la matemática y la física, pero no mostró ningún grado digno de ser  destacado hasta que alcanzó los 15 años de edad. En 1799 comenzó su aprendizaje con Kulenkamp, una firma famosa mercantilista; rápidamente demostró su facilidad con los cálculos y la contabilidad, y como resultado se le proporcionó un sueldo escaso, que permitió que se emancipara de la dependencia de sus padres.

Mientras tanto, Bessel pasaba las noches estudiando varios temas como preparación para su futura carrera como oficial de carga. Pronto dominó la geografía, el español y el inglés, así como el arte de la navegación; esta disciplina despertó por primera vez su fascinación por la astronomía. No contento simplemente con conocer la tecnología de su comercio, Bessel comenzó a investigar los aspectos más profundos de la astronomía y la matemática, considerando que este conocimiento fundamental era esencial. Entre sus primeros logros en el campo de la astronomía encontramos la determinación de la longitud de Bremen, utilizando un sextante que había construido. Él también comenzó a leer literatura astronómica, y de esta manera descubrió las observaciones de 1607 del astrónomo Thomas Harriot del cometa Halley. Después de completar la reducción de las observaciones de Harriot (un proceso que implica compensar la refracción de la luz causada por la atmósfera terrestre y generalmente liberar las observaciones de errores), se la presentó al astrónomo Heinrich Olbers con su propio cálculo de la órbita en 1804. El resultado estaba en estrecho acuerdo con el trabajo de Halley, y Olbers alentó a Bessel a complementar estas reducciones con algunas observaciones adicionales; el fruto de este trabajo fue un artículo impreso en el Monatliche Correspondenz. Con la profundidad digna de un material de tesis doctoral, este artículo atrajo la atención de muchos lectores y marcó una transición en la vida de Bessel.

A principios de 1806, antes de terminar su aprendizaje, Bessel se convirtió en asistente en un observatorio privado cerca de Bremen, que era propiedad de un rico funcionario con interés en la astronomía que tenía contactos con muchos científicos. En el observatorio Bessel adquirió una escolarización completa en la observación de planetas y cometas, y mientras tanto hizo otras contribuciones al cálculo de órbitas de cometas. En 1807 comenzó la reducción de observaciones de James Bradley para 3.222 estrellas, lo que marcó uno de los logros más grandes de Bessel. Friedrich Wilhelm III de Prusia construyó un nuevo observatorio en Königsberg y Bessel fue nombrado director y profesor de astronomía en 1809. Dado que no tenía doctorado, la Universidad de Göttingen le dio uno por sugerencia de Carl Friedrich Gauss, quien había conocido a Bessel en 1807.

Durante la construcción del observatorio, Bessel continuó su trabajo en la reducción de los datos de Bradley; por sus tablas de refracción resultantes, fue galardonado con el Premio Lalande en 1811 por el Institut de France. En 1813 comenzó sus observaciones en el observatorio ya terminado, y permaneció en Königsberg como profesor e investigador por el resto de su vida. En 1812 se casó con Johanna Hagen, con quien tuvo dos hijos y tres hijas. Este afortunado matrimonio fue ensombrecido por la enfermedad y las muertes tempranas de sus hijos, y Bessel encontró distracción en caminar y cazar.

Bessel logró mucho en el campo de la astronomía. La reducción de los datos de Bradley permitió una correcta determinación de las posiciones y movimientos de las estrellas, pero el propio programa de observación y reducción inmediata de Bessel dio como resultado datos altamente precisos. También dio la primera estimación precisa de la distancia a una estrella fija, utilizando técnicas de triangulación y un heliómetro. También participó en la geodesia, la medición de la Tierra, completando una triangulación de Prussia del Este en 1830 con un nuevo aparato de medición y el método de mínimos cuadrados de Gauss. La estimación resultante de Bessel de los parámetros de las dimensiones de la Tierra le valió fama internacional.

Bessel estaba interesado en la matemática a través de su estrecha conexión con la astronomía. El problema de la perturbación en la astronomía era susceptible de análisis utilizando ciertas funciones hipergeométricas confluentes especiales, más tarde llamadas funciones de Bessel. Hubo dos efectos de un planeta intruso en la órbita elíptica de un planeta dado: el efecto directo de la perturbación gravitacional y el efecto indirecto que surge del movimiento del sol causado por el planeta perturbador. Bessel separó las dos influencias, y las funciones de Bessel aparecen como coeficientes en el desarrollo en serie del efecto indirecto. En su estudio del problema, Bessel hizo un estudio intensivo de estas funciones especiales que se describen en su tratado de Berlín de 1824. Casos especiales de estas funciones se conocían desde hacía más de un siglo, descubiertos por Johann Bernoulli y Gottfried Leibniz; Daniel Bernoulli (1732) y Leonhard Euler (1744) también habían investigado los coeficientes de Bessel. Pero la motivación de Bessel surgió de su aplicación a la astronomía, no como un estudio separado en matemática pura.

Su salud fue en declive a partir de 1840, y su último viaje importante a Inglaterra fue en 1842; como resultado de su participación en el Congreso de la Asociación Británica en Manchester, Bessel se animó a completar y publicar algunas investigaciones restantes. Después de dos años agonizantes luchando contra el cáncer, murió el 17 de marzo de 1846, en Königsberg.

Aunque Bessel es conocido principalmente como astrónomo, al igual que Gauss, hizo contribuciones sobresalientes a la matemática pura que podrían aplicarse a la astronomía. Su nombre está ligado a las funciones especiales mencionadas anteriormente, así como a una desigualdad que se utiliza hoy en el análisis de Fourier y la teoría de los espacios de Hilbert. Tanto las funciones de Bessel como la desigualdad de Bessel tienen una relevancia perdurable para los matemáticos modernos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

El segundo de los famosos hermanos Bernoulli, Johann Bernoulli, formaba parte de una notable familia de matemáticos. Fue su destino pasar su primera carrera bajo la sombra de su consumado hermano Jakob Bernoulli, pero finalmente se hizo famoso por su propio genio. Bernoulli, uno de los principales proponentes del cálculo diferencial leibniziano en la vida posterior, fue en cierto punto el matemático más eminente de Europa. 

Johann Bernoulli nació el 6 de agosto de 1667 en Basilea, décimo hijo de una rica familia mercantil. Los Bernoulli eran originarios de Holanda, pero el padre de Johann Bernoulli, Nikolaus Bernoulli, se había establecido en Suiza como y se casó con la rica Margaretha Schönauer. Originalmente, Johann Bernoulli estaba destinado a una carrera en los negocios, pero después de un aprendizaje fallido como vendedor, se le permitió en 1683 inscribirse en la universidad. Su hermano mayor Jakob Bernoulli estaba dando conferencias allí sobre física experimental, y Johann Bernoulli se benefició de la tutela de su hermano mayor en matemática. Respondiendo a una de las disputas lógicas en 1685 de Jakob Bernoulli, Johann Bernoulli fue elevado a magister artium y comenzó el estudio de la medicina. Su primera publicación de procesos de fermentación apareció en 1690, y obtuvo su doctorado en 1694 con una disertación matemática en el campo de la medicina.

Mientras tanto, Johann Bernoulli seguía ávidamente estudiando matemática (sin la aprobación de su padre) y, junto con Jakob Bernoulli, dominó el cálculo diferencial de Gottfried Leibniz. La solución de Johann Bernoulli al problema de la catenaria, planteado por Jakob Bernoulli en 1691, mostró su talento y lo marcó como un matemático líder de Europa. En ese momento estaba en Ginebra, pero pronto se trasladó a París, donde obtuvo reconocimiento gracias a su “teorema de oro”: la determinación de una fórmula para el radio de curvatura de una curva arbitraria. Bernoulli se reunió con Guillaume de L’Hôpital, y fue empleado por este último para darle clases de cálculo infinitesimal, por lo que Bernoulli fue recompensado magníficamente. Cuando Bernoulli volvió más tarde a Basilea, la correspondencia entre ambos continuó y se convirtió en la fuente de un primer libro de cálculo titulado Analyze des infiniment petits (Análisis de los infinitos pequeños). Bernoulli fue un fiel y ávido comunicador, escribiendo 2.500 cartas con 110 eruditos a lo largo de su vida; entre estas personas estaba Leibniz, con quien Bernoulli intercambió sus opiniones científicas a partir de 1693.

Durante este período, un hiato de sus estudios médicos, Bernoulli obtuvo varios resultados matemáticos que fueron publicados como artículos cortos. De principal importancia es su trabajo sobre las funciones exponenciales y el desarrollo en serie de ellas por integración. La integración era vista como la operación inversa a la diferenciación, y por lo tanto podía ser utilizada para resolver ecuaciones diferenciales. La penetrante intuición de Johann Bernoulli permitió una elegancia de solución que las técnicas más brutales de Jakob Bernoulli no lograron, lo que ilustró el contraste entre los dos hermanos. La formulación vía cálculo exponencial de Johann Bernoulli, que es simplemente la aplicación del cálculo diferencial de Leibniz a funciones exponenciales, amplió aún más la aplicabilidad de métodos infinitesimales. En 1695 sumó la serie armónica infinita, desarrolló teoremas de suma para funciones trigonométricas e hiperbólicas, y describió la generación geométrica de pares de curvas. La suma de los cuadrados de los recíprocos permaneció impermeable a ambos esfuerzos de los Bernoulli, y fue calculada más adelante por Leonhard Euler, el estudiante más capaz de Johann Bernoulli.

Habiendo completado su licenciatura en medicina, Bernoulli aceptó la cátedra de matemáticasen la Universidad de Groningen. Ya se había casado con Dorothea Falkner cuando partió para Holanda y estaba lleno de resentimiento hacia Jakob Bernoulli. La relación con su hermano ya había comenzado a desintegrarse: ambos hombres tenían personalidades pendencieras, y Johann Bernoulli era un ávido debatidor y polémico. Sin embargo, la feistiness de Johann Bernoulli extendió más allá de su hermano; en 1702 participó en disputas teológicas con profesores de Groningen, y fue etiquetado un seguidor de Spinoza.

En junio de 1696 Bernoulli planteó el siguiente problema, conocido como la braquistócrona: determinar el camino de descenso más rápido entre dos lugares fijos. Dedicando el problema “a los matemáticos más sagaces de todo el mundo”, Bernoulli dio un plazo de medio año para encontrar la solución; Leibniz, que solucionó inmediatamente el problema, predijo con exactitud que sólo cinco personas en el mundo eran capaces de éxito: Sir Isaac Newton, el propio Leibniz, los hermanos Bernoulli y L’Hôpital. La braquistócrona proporciona otro contraste de las habilidades de los hermanos: el análisis engorroso de Jakob Bernoulli puso los fundamentos para el cálculo de variaciones, mientras que el acercamiento de Johann Bernoulli redujo ingeniosamente el problema a una pregunta en óptica, y dedujo la ecuación diferencial correcta de la ley de la refracción. Jakob Bernoulli planteó posteriormente el problema isoperimétrico, cuya solución requería el nuevo cálculo de variaciones, que había sido característicamente subestimado por Johann Bernoulli. Su solución publicada era por lo tanto inadecuada, dando por resultado el desprestigio desenfrenado de Jakob Bernoulli. No fue hasta muchos años después de la muerte de Jakob Bernoulli que Johann Bernoulli admitió la supremacía del cálculo de variaciones. En 1718, Johann Bernoulli produjo una solución elegante del problema isoperimétrico utilizando la metodología de Jakob Bernoulli, y este trabajo contenía las nociones tempranas para el cálculo moderno de variaciones.

El trabajo de Johann Bernoulli sobre la cicloide, en su descripción de la “fatídica curva del siglo XVII”, promulga su desarrollo de la integración de funciones racionales a través del método de las fracciones parciales. Un acercamiento algebraico formal a tales cálculos era típico de Johann Bernoulli, y su influencia en las técnicas comunes del cálculo se ha sentido con los tiempos modernos.

Después de la muerte de Jakob Bernoulli en 1705, Johann Bernoulli le sucedió en la cátedra de matemática en Basilea, al parecer una decisión motivada por su familia. Pronto se vio envuelto en la polémica disputa de prioridad entre Newton y Leibniz, y criticó abiertamente el apoyo de Taylor al método de fluxiones (el cálculo newtoniano). En debates y concursos posteriores, Bernoulli pudo analizar con éxito algunos problemas, como la trayectoria de la curva balística en el caso general, para la que el cálculo newtoniano era insuficiente. Después de la muerte de Newton en 1727, Bernoulli sería reconocido como el principal matemático de Europa. En Basilea estudió mecánica teórica y mecánica aplicada, y en 1714 publicó su único libro, Théorie de la manoeuvre des vaisseaux. En este trabajo critica las teorías de navegación francesas y desarrolla el principio de velocidades virtuales, con aplicaciones a sistemas mecánicos conservadores. En otros trabajos investigó la transmisión del momento, el movimiento de los planetas y el fenómeno del barómetro luminoso.

Bernoulli fue sumamente honrado durante su vida, siéndole concedida la calidad de miembro de las academias de París, de Berlín, de Londres, de San Petersburgo y de Bolonia. Se benefició de un alto estatus social en Basilea, debido a sus conexiones maritales y la riqueza de la familia, y ocupó varias oficinas cívicas allí. Murió el 1 de enero de 1748, en Basilea. Su ingenio al resolver problemas matemáticos particulares lo convirtió en uno de los mejores matemáticos de su época. En términos de legado, no fue tan exitoso como su hermano Jakob Bernoulli, pero sin embargo dejó un influyente trabajo sobre mecánica y ecuaciones diferenciales.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

La familia Bernoulli produjo muchos matemáticos que contribuyeron a diversas ramas de la matemática como la probabilidad, el cálculo y la teoría de números, y Jakob Bernoulli fue el primer miembro de esa impresionante congregación. Su genio estaba en la inteligente solución de ciertos problemas muy específicos, muchos de los cuales cobraron relevancia para el mundo exterior.

Originarios de Amsterdam, los Bernoullis eran una próspera familia de comerciantes que habían emigrado a Basilea. Jakob Bernoulli nació el 27 de diciembre de 1654 en Basilea, hijo de Nikolaus Bernoulli, un magistrado de la ciudad, y Margaretha Schönauer, hija de un banquero. Jakob Bernoulli estaba destinado también a una carrera mercantil, pero sus proclividades para la investigación científica marcarían su destino por otro camino. Después de obtener el título de maestría en filosofía en 1671, pasó a recibir una licenciatura en teología cinco años después. Sin embargo, parece que Bernoulli tenía poco interés o predilección hacia el ministerio evangélico; ha sido descrito como obstinado y agresivo, con un complejo de inferioridad. Durante este tiempo estudió matemática y astronomía, aunque su padre trató de disuadirlo de ello. En 1676 llegó a Ginebra como profesor particular, y allí comenzó su diario científico llamado Meditationes; Llego viajó a Francia, donde pasó dos años aprendiendo las metodologías de la filosofía científica cartesiana. Un segundo viaje educativo a los Países Bajos e Inglaterra en 1681 lo puso en contacto con matemáticos contemporáneos. Como resultado, Bernoulli pronto formuló una teoría de cometas (1682) y gravedad (1683). De regreso a Basilea, Jakob comenzó a dar conferencias sobre mecánica de cuerpos sólidos y líquidos; envió informes de sus investigaciones a revistas científicas y, mientras tanto, trabajó con la Géométrie de René Descartes. Sus contribuciones en geometría y álgebra (mostró cómo un triángulo podía dividirse en cuatro partes iguales a través de dos rectas perpendiculares) fueron colocadas en un apéndice de la cuarta edición de la Géométrie.

Bernoulli presentó a continuación cuatro estudios de lógica formal, publicados en medio de una disputa, de 1684 a 1686, y su primer trabajo sobre probabilidad apareció en 1685. También estaba familiarizado con los escritos de John Wallis e Isaac Barrow sobre infinitesimales en óptica y problemas mecánicos, y de esta manera se introdujo al cálculo.

En 1684 Bernoulli se casó con Judith Stupanus, la hija de un rico farmacéutico. Uno de sus hermanos menores, Johann Bernoulli, comenzó a asistir a la Universidad de Basilea; como respondedor a los debates lógicos de Jakob Bernoulli, Johann Bernoulli obtuvo su maestría en artes en 1685. Estudió medicina formalmente, pero en secreto persiguió la matemática bajo la tutela de Jakob Bernoulli. La relación entre los dos hermanos resultaría dura, ya que sus personalidades similares llevaron a una implacable fricción y rivalidad.

En 1687 Bernoulli fue nombrado profesor de matemática en la Universidad de Basilea, y en este tiempo estudió y dominó el cálculo diferencial de Gottfried Wilhelm Leibniz; como resultado, en 1689 Bernoulli produjo una teoría de series infinitas, estableció la ley de los grandes números de la teoría de la probabilidad, y llamó la atención sobre la importancia de la inducción completa. El análisis de la solución de Christiaan Huygens al problema de la curva de descenso constante en un campo gravitatorio proporciona un excelente ejemplo del dominio de Bernoulli del cálculo leibniziano. Fue en este contexto donde apareció por primera vez el término integral. Posteriormente investigó la elasticidad a través de una simple ecuación diferencial (1694), y también investigó las espirales parabólica y logarítmica (1691). Su procedimiento de determinación de la línea focal de rayos paralelos incidentes de luz sobre un espejo semicircular consiste en generar una curva algebraica a través de la envolvente de sus círculos de curvatura. Esto condujo más adelante a una ecuación diferencial que describió la forma de una vela que era inflada por el viento (1692, 1695). Bernoulli trabajó cuidadosamente en una amplia gama de problemas antiguos y modernos, incluyendo la llamada ecuación diferencial de Bernoulli, utilizando las herramientas del cálculo diferencial con experta facilidad.

Las fricciones entre Jakob Bernoulli y Johann Bernoulli se hicieron cada vez más frecuentes, principalmente debido a su mutuo conflicto de personalidad. Aunque inferior a su hermano menor en términos de intuición y velocidad de pensamiento, la mente de Jakob Bernoulli podía penetrar más profundamente en un tema. Un famoso problema de 1696 propuesto por Johann Bernoulli, llamado braquistócrona, se refería a la determinación de una curva de descenso más rápido entre dos puntos. Jakob Bernoulli resolvió esto en 1697, y también corrigió la solución de Johann Bernoulli del problema isoperimétrico en 1701, que este último se negó a reconocer hasta mucho después de la muerte de Jakob Bernoulli. Su antipatía mutua pronto llevó a la crítica del trabajo de cada uno, y continuó la discusión a través de la imprenta de 1699 a 1700.

Los principales logros de Bernoulli radican en su inteligente análisis de problemas particulares de interés matemático, clásico y mecánico. Desarrolló una teoría de fenómenos naturales basada en la colisión de partículas de éter, discutió el punto central de oscilación y descubrió las propiedades de la resistencia de los cuerpos elásticos. El centro de gravedad de dos cuerpos en movimiento uniforme, la forma de un cordón estirado, un movimiento acelerado centralmente y el impulso colectivo de muchos choques son algunos de los problemas mecánicos que él consideró. En ingeniería, él trató el problema del puente levadizo en 1695, que consistía en determinar la curva de un peso deslizante que cuelga en un cable que sostiene el puente levadizo en equilibrio.

En Theory of Series (publicado en cinco disertaciones de 1682 a 1704), desarrolla series para pi y el logaritmo de 2, investigó el interés compuesto, las series exponenciales y las series armónicas. La obra más original de Bernoulli, Ars conjectandi, publicada póstumamente en 1713 contiene la teoría de combinaciones, las series exponenciales, los números de Bernoulli, el beneficio esperado de varios juegos de azar, la probabilidad como medida de confianza, y la ley de grandes números. Murió en Basilea, el 27 de diciembre de 1705, de tuberculosis.

Tal vez su contribución a la probabilidad es su legado más significativo, ya que este campo ha sido ampliamente desarrollado a partir de sus primeros esfuerzos. Ciertamente, él avanzó también en álgebra, cálculo infinitesimal, cálculo de variaciones, mecánica y series infinitas. Bernoulli fue ampliamente leído por generaciones posteriores de matemáticos, y es reconocido hoy por sus contribuciones al cálculo y la probabilidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »