Feeds:
Entradas
Comentarios

Posts Tagged ‘John Napier’

Antes de que Sir Isaac Newton y Gottfried Leibniz desarrollaran sistemáticamente el cálculo integral, algunos otros matemáticos trabajaron como predecesores, basándose en las ideas insinuadas por Arquímedes de Siracusa. El concepto de indivisibles, esas cantidades tan pequeñas que no pueden dividirse por la mitad, había comenzado a afianzarse, y Cavalieri fue uno de los primeros exponentes; su trabajo sobre la integración inspiraría más tarde a Blaise Pascal, Newton y Leibniz. 

Se desconoce la fecha exacta del nacimiento de Bonaventura Cavalieri, y no se sabe nada de su familia. Nació en Milán, Italia, y adoptó el nombre de Bonaventura al ingresar a la orden religiosa de los jesuitas cuando era niño, y permaneció monástico durante toda su vida. En 1616 fue trasladado al monasterio de Pisa, donde conoció a Castelli, un monje benedictino y estudiante de Galileo Galilei. En ese momento, Castelli era profesor de matemática en Pisa, y adoptó a Cavalieri como su alumno. El niño dominó rápidamente las obras de Euclides de Alejandría, Arquímedes y Apolonio de Perga, y demostró un notable talento para la geometría, a veces actuando como sustituto de Castelli. Más tarde, Cavalieri fue presentado a Galileo, con quien intercambió muchas cartas a lo largo de los años. 

De 1620 a 1623 Cavalieri enseñó teología en Milán, después de haber sido ordenado diácono del cardenal Borromeo. Durante este período desarrolló sus primeras ideas sobre el método de los indivisibles: uno ve una superficie plana como la unión de infinitas líneas paralelas (los indivisibles), por lo que el área se calcula a partir de la suma de todas sus longitudes. De la misma manera, una figura sólida se componía de infinitas superficies apiladas, de modo que el volumen podía calcularse sumando todas las áreas. Su siguiente tarea fue en Lodi, donde permaneció tres años, y en 1626 se convirtió en prior del monasterio en Parma; buscó una cátedra en Parma, pero sin éxito. Cayó enfermo en 1626 de gota, lo que lo atormentó durante toda su vida, Cavalieri se recuperó en Milán y pronto anunció a Galileo la finalización de su Geometria Indivisibilibus Continuorum Nova Quadam Ratione Promota (Un método determinado para el desarrollo de una nueva geometría de indivisibles continuos). Con la ayuda de este último, Cavalieri obtuvo en 1629 la primera cátedra de matemática en Bolonia, que mantuvo hasta su muerte el 30 de noviembre de 1647.

Cavalieri se dio cuenta de que Arquímedes conocía un método para calcular áreas y volúmenes que no estaba dispuesto a revelar, ya fuera por secreto competitivo o por el deseo de evitar la burla de sus conservadores colegas. Cavalieri desarrolló un sistema racional de los llamados indivisibles e intentó establecer la validez de este enfoque. A partir de sus principios, Cavalieri dedujo varios de los teoremas básicos del cálculo integral, pero sin el formalismo propio de la integral. Su método de cálculo, que implica el concepto de congruencia bajo traslación, se muestra como válido para paralelogramos y figuras planas que se encuentran entre dos líneas paralelas.  

Sus contemporáneos rechazaron en gran parte la metodología de Cavalieri, sin saber que el mismo Arquímedes había utilizado técnicas similares. Cavalieri obtuvo algunas fórmulas básicas, como la regla de potencias para la integración de un polinomio, en 1639, aunque había sido descubierta tres años antes por Pierre de Fermat y Gilles de Roberval. También descubrió el volumen de sólidos obtenidos al rotar alrededor de un eje. 

También en Geometria hay una formulación temprana del teorema del valor medio, que establece que entre dos puntos cualquiera de una curva se puede encontrar una línea tangente paralela a la cuerda que conecta los dos puntos. Cavalieri también investigó los logaritmos, que habían sido inventados recientemente por John Napier, así como la trigonometría con aplicaciones a la astronomía. Su Centuria di varii problema de 1639 trató la definición de superficies cilíndricas y cónicas, y también dio fórmulas para el volumen de un barril y la capacidad de una bóveda. Entre sus otras contribuciones a la ciencia están una teoría de las cónicas aplicadas a la óptica y la acústica, la idea del telescopio reflector (aparentemente anterior a Newton), la determinación de la distancia focal de una lente y las explicaciones de los espejos ustorios de Arquímedes. 

La obra de Cavalieri fue un primer paso moderno hacia el cálculo, y debería verse como un eslabón esencial en la cadena entre Arquímedes y los grandes matemáticos del siglo XVII que desarrollaron el cálculo: Pascal, Leibniz y Newton, junto con John Wallis e Isaac Barrow.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncios

Read Full Post »

El desarrollo de nuevos métodos de cálculo numérico fue una respuesta a las crecientes exigencias prácticas del cálculo numérico, en particular en la trigonometría, la navegación y la astronomía. Las nuevas ideas se propagaron rápidamente a través de Europa y para el año 1630 se convirtieron en una gran revolución en la práctica numérica.

Simon Stevin de Holanda, en su breve folleto La Disme de 1585, presentó las fracciones decimales a Europa y mostró cómo extender los principios de la aritmética hindú-arábiga al cálculo con estos números. Stevin hizo hincapié en la utilidad de la aritmética decimal “para todas las cuentas que aparecen en los asuntos de los hombres”, y explicó en un apéndice cómo se podía aplicar a la topografía, la estereometría, la astronomía y  la medición. Su idea era extender el principio posicional de base 10 a números con partes fraccionarias, con una extensión correspondiente en la notación para cubrir estos casos. En su sistema denotó al número 237.578 por

en donde los dígitos a la izquierda del cero son la parte entera del número. A la derecha del cero están los dígitos de la parte fraccionaria, con cada dígito seguido por un número rodeado con un círculo que indica la potencia negativa a la que se eleva 10. Stevin demostró cómo la aritmética habitual de los números enteros podía extenderse a fracciones decimales, utilizando las reglas que determinan el posicionamiento de las potencias negativas de 10.

Simon Stevin

Además de su utilidad práctica, La Disme fue significativa por la forma en que socavó el estilo dominante de la geometría clásica griega en la matemática teórica. La propuesta de Stevin requería rechazar la distinción en la geometría euclidiana entre la magnitud, que es continua, y el número, que es una multitud de unidades indivisibles. Para Euclides, la unidad, o uno, era un tipo especial de cosa, no un número sino el origen o principio del número. La introducción de las fracciones decimales parecía dar a entender que la unidad podía subdividirse y que una magnitud arbitraria continua podía ser representada numéricamente. Se suponía implícitamente el concepto de número real positivo en general.

En 1614 el escocés lord John Napier  publicó por primera vez tablas de logaritmos  en su tratado Description of the Marvelous Canon of Logarithms. Este trabajo fue seguido (postumamente) cinco años después por otro en el que Napier estableció los principios utilizados en la construcción de sus tablas. La idea básica detrás de los logaritmos es que la suma y la resta son más fáciles de realizar que la multiplicación y la división que, como observó Napier, requieren un “gasto de tiempo tedioso” y están sujetos a “errores resbaladizos”. Por la ley de los exponentes,

a_{n}a_{m} = a_{n+m};

es decir, en la multiplicación de números, los exponentes se relacionan de forma aditiva. Por correlación, la secuencia geométrica de números

a, a_{2}, a_{3},\ldots

(con a la base) y la secuencia aritmética

1, 2, 3, \ldots

e interpolando valores fraccionarios, es posible reducir el problema de la multiplicación y la división a uno de sumas y restas. Para ello Napier escogió una base que fuera muy cercana a 1, que difiera de él solamente en 1/107. Por tanto, la secuencia geométrica resultante produjo un conjunto denso de valores, adecuado para la construcción de una tabla.

John Napier

En su obra de 1619 Napier presentó un modelo cinemático interesante para generar las secuencias geométricas y aritméticas utilizadas en la construcción de sus tablas. Asume dos partículas que se mueven a lo largo de líneas separadas desde puntos iniciales dados. Las partículas comienzan a moverse en el mismo instante con la misma velocidad. La primera partícula continúa moviéndose con una velocidad que va disminuyendo, proporcional en cada instante a la distancia que queda entre ella y algún punto fijo dado sobre la línea. La segunda partícula se mueve con una velocidad constante igual a su velocidad inicial. Dado cualquier incremento de tiempo, las distancias recorridas por la primera partícula en los sucesivos incrementos forman una sucesión geométricamente decreciente. Las correspondientes distancias recorridas por la segunda partícula forman una sucesión aritmética creciente. Napier fue capaz de utilizar este modelo para derivar teoremas que producen límites precisos para aproximar valores en las dos sucesiones.

El modelo cinemático de Napier indicaba cómo los matemáticos expertos se habían volcado a principios del siglo XVII al análisis del movimiento no uniforme. Las ideas cinemáticas, que aparecían con frecuencia en la matemática de la época, proporcionaban un medio claro y visible para la generación de magnitudes geométricas. La concepción de una curva trazada por una partícula que se mueve a través del espacio jugó más tarde un papel significativo en el desarrollo del cálculo.

Las ideas de Napier fueron recogidas y revisadas por el matemático inglés Henry Briggs, el primer profesor saviliano de geometría en Oxford. En 1624 Briggs publicó una extensa tabla de logaritmos comunes, o logaritmos de base 10. Debido a que la base ya no era cercana a 1, la tabla no se podía obtener en la forma más sencilla de Napier, y por tanto Briggs ideó técnicas que implicaban el cálculo de diferencias finitas para facilitar el cálculo de las entradas. También ideó procedimientos de interpolación de gran eficiencia computacional para obtener valores intermedios.

Henry Briggs

En Suiza, el fabricante de instrumentos llegó a la idea de los logaritmos de Napier de forma independiente, aunque no publicó sus resultados hasta 1620. Cuatro años más tarde, una tabla de logaritmos preparada por Kepler apareció en Marburg. Tanto Bürgi como Kepler eran observadores astronómicos, y Kepler incluyó tablas logarítmicas en su famoso Tabulae Rudolphinae de 1627, tabulaciones astronómicas del movimiento planetario derivadas mediante el uso de la suposición de órbitas elípticas alrededor del Sol.

Joost Bürgi

 

Read Full Post »