Hermann Weyl, uno de los grandes matemáticos de principios del siglo XX, desarrolló con éxito las ideas de otros en teorías rigurosas. Sus documentos son notables por su originalidad y profundidad de conocimiento, y su trabajo ha ejercido una gran influencia en la investigación actual.
Hermann Weyl nació el 9 de noviembre de 1885 en Elmshorn, Alemania. Cuando era niño, asistió al Gymnasium en Altona e ingresó a la Universidad de Gotinga a los 18 años. Permaneció allí durante varios años estudiando matemática. Después de obtener su título, se convirtió en profesor en la Universidad de Zurich en 1913.
Weyl había estudiado con David Hilbert en Gotinga y seguramente fue uno de sus alumnos más talentosos. El primer trabajo importante de Weyl, que data de 1910, fue sobre la teoría espectral de las ecuaciones diferenciales, que era un área que Hilbert también estaba investigando. En 1911 comenzó a estudiar la teoría espectral de ciertos operadores en los llamados espacios de Hilbert. Sus métodos proporcionaron una idea geométrica de estos espacios abstractos y se convirtieron en técnicas importantes dentro del análisis funcional.
En 1916 Weyl publicó un famoso artículo sobre teoría analítica de números, que trata la distribución de ciertas secuencias especiales de números. Con un ingenio característico, dio una solución novedosa a preguntas no resueltas haciendo conexiones con la teoría de la integración. Sus técnicas han seguido siendo relevantes para la teoría aditiva de números.
Después de este trabajo en teoría de números, Weyl volvió a la geometría (anteriormente, en 1913, había dado una base rigurosa para la definición intuitiva de una variedad riemanniana). En 1915 atacó un problema relacionado con ciertas deformaciones de superficies convexas, y describió un método de demostración que finalmente resultaría fructífero. Weyl vió interrumpido su trabajo a raíz de la Primera Guerra Mundial, pero fue liberado del servicio militar en 1916. En Zurich trabajó con Albert Einstein y, en consecuencia, se interesó en la teoría general de la relatividad. Se propuso proporcionar una base matemática para las ideas físicas, descubriendo el concepto de conexión lineal. Élie-Joseph Cartan desarrolló aún más esta importante idea.
En la década de 1920, Weyl se interesó en los grupos de Lie, y sus artículos sobre este tema son probablemente los más importantes e influyentes. Parte del genio de su enfoque fue el uso de métodos topológicos sobre objetos algebraicos como los grupos de Lie. Sophus Lie había introducido los grupos de Lie como un nuevo e interesante campo de la matemática, pero Weyl avanzó mucho en esta rama a través de su nueva metodología.
Como matemático, Weyl creía en la importancia de las teorías abstractas, y creía que eran capaces de resolver problemas clásicos cuando se combinaban con un pensamiento cuidadoso y penetrante. Difirió con el formalista Hilbert en la filosofía de los fundamentos matemáticos, y en su lugar aceptó el intuicionismo de Luitzen Egbertus Jan Brouwer. Sin embargo, en muchos otros aspectos, mostró la influencia de Hilbert. En 1930 sucedió a Hilbert en Gotinga, pero decidió abandonar la Alemania nazi en 1933, llegando al Instituto de Estudios Avanzados de Princeton. Permaneció en los Estados Unidos hasta que se retiró en 1951. Dividió los últimos años de su vida entre Princeton y Zurich. Murió el 8 de diciembre de 1955.
Hermann Weyl realizó varias contribuciones significativas a la teoría de números, la geometría y las ecuaciones diferenciales. Cuando resolvía un problema difícil, a menudo ideaba una técnica completamente nueva para la demostración; Estos nuevos métodos generalmente se convirtieron en herramientas estándar o, a veces, condujeron a nuevas áreas de investigación. Su trabajo sobre la teoría de los grupos de Lie proporcionó una base para avances posteriores.
Fuente bibliográfica:
- McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.