Feeds:
Entradas
Comentarios

Posts Tagged ‘Paolo Ruffini’

La matemática en la China del siglo XIII se ocupaba principalmente de las soluciones de ecuaciones algebraicas y la determinación de áreas de ciertas formas, con aplicaciones importantes a las finanzas, el comercio, la agricultura y la astronomía. Ch’in Chiu-Shao, también conocido como Qín Jiǔshào, trabajó en problemas de este tipo, dejando atrás algunos métodos generales para su solución. Fue una importante influencia en los matemáticos chinos posteriores. 

Ch’in Chiu-Shao nació alrededor de 1202 en la provincia china de Szechuan; su padre era funcionario, y Ch’in seguiría la vocación de su padre. Era un joven poco disciplinado, y más tarde se convirtió en un adulto vengativo y sin escrúpulos. Durante uno de los banquetes de su padre, Ch’in arrojó imprudentemente una piedra en medio de los invitados reunidos en una exhibición de sus habilidades de arquería; más adelante en su vida sería conocido por envenenar a sus adversarios. 

En 1219 Ch’in se unió al ejército como capitán de un escuadrón de voluntarios que ayudaba a reprimir un levantamiento local. En 1224 y 1225 Ch’in siguió a su padre a la ciudad capital de Hangchow. Allí estudió astronomía bajo la tutela de los astrónomos oficiales. Pronto abandonó la capital cuando su padre fue transferido a otra posición, y en 1233 se sabe que Ch’in sirvió como sheriff. 

En 1236 los mongoles invadieron Szechuan, y Ch’in huyó hacia el este, convirtiéndose en un vice-administrador en la provincia de Hupeh, y más tarde en gobernador de Hohsien en la provincia de Anhwei. Su siguiente publicación fue en Nanking en 1244, que sostuvo brevemente, y finalmente llegó a Wu-hsing, donde escribió su Tratado Matemático en 1247. Según su propia cuenta, Ch’in aprendió su matemática de un matemático anónimo. 

El manuscrito de Ch’in, su única escritura matemática conocida, constaba de nueve partes, cada una de las cuales tenía dos capítulos. Allí se ocupa de análisis indeterminados, cálculos astronómicos, medición de la tierra, topografía por triangulación, impuestos a la tierra, dinero, obras estructurales, asuntos militares y trueque, respectivamente. Ch’in representó el apogeo del logro chino en la arena del análisis indeterminado, que apareció por primera vez en el siglo IV. Un tipo de problema involucraba encontrar un número con varios restos dados para divisores dados; estos tipos de problemas ahora caen generalmente bajo el dominio del llamado teorema chino del resto. Uno podría aplicar estos resultados a cálculos de calendario y logística militar, entre otras cosas.  

El método de Ch’in para tales problemas de resto fue general; él dio una fórmula para resolver tales preguntas que no fue descubierta en Europa hasta el siglo XVI. Esta técnica era aplicable cuando los diversos divisores eran relativamente primos (cuando ellos mismos no tenían factores comunes); pero Ch’in también extendió su método a la situación más general cuando los divisores no eran relativamente primos. Esta técnica llegó a conocerse como «el método de la Gran Extensión para buscar la unidad». Por supuesto, Ch’in no usó las notaciones modernas de la aritmética modular, sino que introdujo muchos términos técnicos propios, como mónadas celestiales y números de operación. 

Al resolver ecuaciones algebraicas, Ch’in usó un tablero de conteo con varillas dispuestas en ciertas formaciones para representar números y cantidades desconocidas. De esta forma, calcularía soluciones a varias ecuaciones, de grado hasta 10. Su método, idéntico al descubierto por Paolo Ruffini en 1805, fue etiquetado con algo así como la «evolución armoniosamente alternante»; parece, sin embargo, que Ch’in no fue el inventor de esta técnica, ya que sus contemporáneos también estaban familiarizados con ella.  

Es interesante que el libro de Ch’in da varios valores para el número pi, como 22/7 y raíz cuadrada de 10, así como el viejo valor de 3. Da también áreas de varias formas geométricas, como triángulos (sin el uso de trigonometría), arcos circulares y cuadrángulos. Trata varias ecuaciones lineales simultáneas en varias variables, y Ch’in también discute la suma de ciertas series numéricas. Finalmente, trata problemas que involucran diferencias finitas, ya que estos eran de interés para los creadores de calendarios. 

Después de este trabajo Ch’in regresó a la administración pública en 1254, y fue nombrado gobernador de Hainan en 1258. Fue despedido tres meses después por cargos de corrupción, y regresó a casa con una inmensa fortuna acumulada por su aceptación de numerosos sobornos. Más tarde se convirtió en asistente de su buen amigo Wu Ch’ien (de quien se relata que Ch’in lo engañó con un terreno), y lo siguió a las provincias de Chekiang y Kwangtung. Poco después de recibir un puesto en Mei-hsien, Ch’in murió. El año de su muerte se estima en 1261. 

Ch’in fue conocido como poeta, arquero, esgrimista, ecuestre y músico experto, además de ser un destacado matemático de su tiempo y de su país. Las historias sobre él pintan una imagen desacreditada; se relata que castigó a una mujer miembro de su hogar con la inanición. Sin embargo, su talento matemático es indiscutible, y su dominio del análisis indeterminado le reserva un espacio en la historia matemática.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncio publicitario

Read Full Post »

Enrico Betti es conocido por sus contribuciones a la teoría de Galois (una teoría algebraica abstracta utilizada para resolver ecuaciones algebraicas, desarrollada por Evariste Galois) y a la teoría de las funciones elípticas. Su trabajo en el análisis del hiperespacio inspiró más tarde a Henri Poincaré en la fundación de la geometría algebraica. 

Betti nació el 21 de octubre de 1823 en Pistoia, Italia, y su padre murió cuando era muy joven. Como resultado, su madre supervisó su educación, y posteriormente se matriculó en la Universidad de Pisa, recibiendo un grado en ciencias físicas y matemática. Después se involucró en la guerra por la independencia italiana, participando como soldado en las batallas de Curtatone y Montanara. Su profesión posterior fue como profesor de matemática de secundaria en Pistoia, aunque simultáneamente continuó sus propias investigaciones en matemática pura.

Gran parte del trabajo de Betti era en el campo del álgebra. El trabajo de Evariste Galois, que recibió poco reconocimiento durante la breve vida de su autor, se resumió en gran medida en una carta personal de 1832 que posteriormente fue publicada por Joseph Liouville en 1846. Desde entonces, Betti promovió el trabajo de Galois sobre la solubilidad de las ecuaciones algebraicas mediante operaciones por radicales (la cuestión de determinar qué ecuaciones podrían tener sus soluciones expresadas en términos de radicales y números racionales). Conectando el trabajo de Galois con las investigaciones previas de Niels Henrik Abel y Paolo Ruffini, Betti superó la brecha entre los nuevos métodos del álgebra abstracta y los problemas clásicos (como el quíntico) tratados anteriormente. Muchos consideraban entonces que las labores de Galois eran irrelevantes y estériles, pero las elaboraciones de Betti en dos documentos de 1852 y 1855 constituyen un paso importante para revertir esas opiniones adversas; hoy en día la teoría de Galois es vista como un componente fructífero y encantador del álgebra abstracta.

También investigó la teoría de las funciones elípticas, un tema popular en el siglo XIX; Betti describió esta rama de la matemática relacionándola con la construcción de ciertas funciones trascendentales en 1861, y Karl Weierstrass desarrolló estas ideas en los años siguientes. Tomando otra mirada no-algebraica sobre el mismo tema, Betti investigó las funciones elípticas desde la perspectiva de la física matemática. Con la guía de Bernhard Riemann, con quien Betti se había reunido en Göttingen en 1858, Betti investigó los procedimientos utilizados en electricidad y en análisis matemático.

En 1865 Betti aceptó una cátedra en la Universidad de Pisa, que conservó por el resto de su vida. Más tarde se convirtió en rector de la universidad y director de la escuela de profesores en Pisa. Desde 1862 fue miembro del parlamento italiano, sirvió brevemente como subsecretario de Estado para la educación pública en 1874 y se convirtió en senador en 1884. Sin embargo, sus intereses principales no estaban en la política o la administración, sino en la investigación matemática pura; Betti sólo deseaba tener soledad para su propia reflexión intelectual y reuniones animadas con sus amigos más cercanos.

El trabajo de Betti en el campo de la física teórica condujo a una ley de reciprocidad en la teoría de la elasticidad, conocida como el teorema de Betti (1878). Primero aprendió los métodos de George Green para la integración de las ecuaciones de Pierre-Simon Laplace en la teoría de potenciales y utilizó esta metodología en el estudio de la elasticidad y el calor. También analizó el hiperespacio en 1871; Poincaré se inspiraría más tarde en Betti para ampliar estas investigaciones preliminares. Los números de Betti, acuñados por Poincaré, se utilizarían comúnmente como características mensurables de una variedad algebraica. 

Betti fue un excelente maestro, trayendo su pasión y su amplio conocimiento al aula, y fue un ferviente defensor del regreso a la educación clásica. Consideró los Elementos de Euclides de Alejandría como un texto modelo para la instrucción, y abogó firmemente por su regreso a las escuelas secundarias. Influyó en varias generaciones de estudiantes en Pisa, guiando a muchos hacia la búsqueda del conocimiento científico. Murió el 11 de agosto de 1892, en Pisa. 

El impacto de Betti en la matemática todavía se siente hoy. Su investigación temprana en topología algebraica fue fundamental, como lo atestigua la importancia duradera de los números de Betti. Tal vez aún más importante fue su desarrollo de la teoría de Galois, que se ha convertido en un gran componente de los estudios modernos en álgebra abstracta.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »