Feeds:
Entradas
Comentarios

Posts Tagged ‘Pierre de Fermat’

Blaise Pascal es famoso por su brillante trabajo fundacional en probabilidad, geometría e hidrostática, así como por sus reflexiones sobre la filosofía y la religión. El trabajo de Pascal en la matemática del juego, junto con el de Pierre de Fermat, sentó las bases de la teoría moderna de la probabilidad y la estadística y provocó un movimiento en Europa occidental hacia una sociedad “estocástica”. Sus trabajos en el campo de la hidrostática fueron innovadores, proporcionando gran parte de la teoría detrás de la moderna tecnología hidráulica, mientras que sus esfuerzos en la apologética cristiana son notables por su claridad de pensamiento y comprensión de la naturaleza humana.

Pascal nació el 19 de junio de 1623 en Clermont (ahora Clermont-Ferrand) en la región francesa de Auvernia. Blaise fue el tercer hijo de Étienne Pascal, un matemático, quien educó a su único hijo. Antoinette Begon, su madre, murió cuando Pascal tenía solo tres años. Curiosamente, al joven Pascal no se le permitió estudiar matemática hasta los 12 años, cuando comenzó a leer los Elementos de Euclides de Alejandría. Sin embargo, incluso antes de este tiempo, el precoz niño estaba investigando la geometría por su cuenta.

Blaise acompañaría a su padre a las reuniones celebradas en París por Marin Mersenne, un sacerdote que promovió en gran medida la difusión y la comunicación de la matemática. En este contexto, Pascal desarrolló aún más sus habilidades matemáticas, siendo influenciado por el pensamiento de Girard Desargues. Pascal pronto se convirtió en el principal discípulo de Desargues en el estudio de la geometría, y en junio de 1639 descubrió el “hexagrama místico”. Había encontrado que los lados opuestos de un hexágono inscritos en una sección cónica forman tres puntos que son colineales.

En diciembre de 1639 la familia Pascal se mudó a Rouen, donde Étienne logró un puesto como recaudador de impuestos. En 1640, Blaise publicó su primer trabajo, Ensayo sobre secciones cónicas, un resumen de un tratado sobre cónicas. Poco después, en 1642, comenzó un intento de mecanizar la suma y la resta para ayudar a su padre con sus cálculos contables. En 1645, Pascal había completado la construcción de la primera calculadora digital (aunque Wilhelm Schickard había diseñado un prototipo anterior en 1623 que no fue fabricado). El dispositivo, aunque no tuvo éxito financiero debido al costo de la construcción, era bastante similar a una calculadora mecánica de los años cuarenta.

Después de varios experimentos con la presión atmosférica, Pascal concluyó que a medida que la altitud aumenta, la presión del aire disminuye y que existe un vacío por encima de la atmósfera. Aunque cierto, estos hallazgos, publicados en 1647 como New Experiments Concerning Vacuums resultaron controvertidos en la comunidad científica, y hubo cierto debate sobre quién tenía prioridad en los descubrimientos, ya que varios científicos estaban investigando la hidrostática, que se define como el estudio de los fluidos en reposo y las presiones que ejercen, y el Treatise on the Equilibrium of Liquids de Pascal de 1654 dio una descripción rigurosa del tema. Este tratado demostró claramente los efectos del peso del aire, así como varias leyes de la hidrostática, incluida la ley de de la presión de Pascal. Este principio es la base de la prensa hidráulica, esencialmente un tipo de palanca. Su tratamiento dio una síntesis de conocimientos previos y nuevos trabajos, y presentó lúcidamente el concepto de presión.

El joven Pascal había estado interesado en la religión desde 1646, y cuando su padre murió en 1651 se volvió profundamente contemplativo sobre los asuntos espirituales. Sus ideas se publicaron más tarde en su obra filosófica Pensées de Monsieur Pascal sur la religion et surquelques autres sujets (Pensamientos de Monsieur Pascal sobre la religión y algunos otros temas) de 1670. Su trabajo sobre geometría proyectiva, el estudio matemático de la perspectiva, quedó plasmado en la obra The Generation of Conic Sections (1654). Sección cónica es el nombre de una curva obtenida al cortar un cono por un plano en ciertos ángulos. Este gran trabajo abordó la generación proyectiva de cónicas y sus propiedades, la definición del hexagrama místico y la teoría proyectiva de centros y diámetros. Además, su Treatise on the Arithmetical Triangle apareció en el mismo año, donde trata el llamado triángulo de Pascal, un triángulo de números en el que cada entrada se obtiene sumando las dos entradas que se encuentran arriba. Aunque no inventó el triángulo aritmético, su trabajo fue bastante influyente en el desarrollo del teorema binomial general.

En 1654, Pascal estaba trabajando en algunos problemas de juego con Fermat. Las dos preguntas principales que investigaron fueron: el problema de los dados, calcular la probabilidad de obtener un par de seises en un número dado de lanzamientos; y el problema de las apuestas, relacionado con cómo dividir el pozo de manera justa entre los jugadores si se interrumpe un juego de azar. Al formular este tipo de problemas, Pascal se convirtió en el padre fundador de la teoría occidental de la probabilidad. En los siglos siguientes, la cultura occidental se volvería cada vez más cuantitativa, abarcando un enfoque estocástico (es decir, relacionado con la probabilidad y la posibilidad) de los fenómenos. Se hizo evidente, después de estos humildes orígenes, que se podía obtener información confiable de eventos inciertos, siempre que se pudiera realizar y medir un gran número de ensayos repetidos. Pascal trabajó en un cálculo de probabilidades, utilizando el razonamiento inductivo para encontrar soluciones. Su trabajo sobre juegos parece haber afectado la visión de Pascal de la apologética cristiana (defensas retóricas o racionales de una creencia), ya que Pensées incluye la famosa “apuesta de Pascal”:

Si Dios no existe, uno no perderá nada creyendo en él, mientras que si existe, perderá todo al no creer.

De hecho, el enfoque de Pascal de la probabilidad prefigura la teoría moderna de la decisión, en la cual la elección está íntimamente relacionada con la probabilidad de eventos inciertos. Uno puede ver el método apologético de Pascal como un problema clásico en la teoría de la decisión.

Pascal sufrió durante mucho tiempo de mala salud (indigestión y dolores de cabeza constantes), estuvo enfermo durante su juventud y se temía que no tuviera mucho tiempo para vivir. En 1654 fue arrastrado más profundamente por las preocupaciones religiosas; en la noche del 23 de noviembre, designado como su “noche de fuego”, experimentó una segunda conversión al cristianismo; a partir de este momento, se apartaría de la ciencia y la matemática para adentrarse  de lleno en la religión y la epistemología (el estudio del conocimiento y las estructuras de creencias). En 1656 y 1657 compuso sus Lettres provinciales (Cartas provinciales), una polémica jansenista contra los jesuitas. Fueron publicadas de forma anónima, y se dice que su rigor de pensamiento y claridad de presentación causaron una herida al jesuitismo de la que nunca se recuperó. Su defensa del cristianismo a los incrédulos, formulada en Pensées, fue escrita en este momento.

Animado incluso por sus amigos jansenistas, Pascal hizo un trabajo final en matemática. En 1657 preparó los Elementos de Geometría, que desafortunadamente no fue completado. Su último trabajo en 1658 y 1659 fue sobre la cicloide, una curva trazada por la trayectoria de un punto marcado en la circunferencia de un círculo rodante. En sus investigaciones de esta curva, desarrolló la “teoría de los indivisibles”, siendo un precursor del cálculo integral que pronto formualron Sir Isaac Newton y Gottfried Leibniz, Pascal consideró problemas tales como calcular áreas bajo curvas, y centros de gravedad para superficies y volúmenes debajo de superficies de revolución (la superficie obtenida al girar una curva alrededor de un eje fijo). Curiosamente, parece que este trabajo se desarrolló a lo largo de varios concursos matemáticos públicos, en los que Pascal planteó problemas de cálculo a la comunidad.

En 1659, Pascal cayó gravemente enfermo y buscó la soledad, dedicándose a obras de caridad. Su último proyecto fue el desarrollo de un proyecto de transporte público en París que involucraba carruajes tirados por caballos. Murió a los 39 años con gran dolor, el 19 de agosto de 1662, en París. Por sus contribuciones a la matemática, así como a la física y la religión, Pascal se ubica como uno de los intelectos más grandes de Occidente. Parece que su alma estaba dividida entre el orgullo por sus habilidades y logros intelectuales y la abnegación de una austera marca agustiniana, pero tal vez fue esta misma tensión la que produjo un trabajo tan brillante. Aunque algunos matemáticos pueden exceder a Pascal en términos de originalidad, profundidad o volumen, la sistematización de gran parte de la ciencia y la matemática de Pascal debe llamar la atención y ser motivo de admiración.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Anuncios

Read Full Post »

La teoría de la probabilidad, que se fundó en los estudios del siglo XVII de Blaise Pascal  y Pierre de Fermat, se convirtió en uno de los temas matemáticos más importantes e influyentes del siglo XX. El trabajo de Andrei Markov aportó algunos conceptos fundamentales a la disciplina de la probabilidad, y las llamadas cadenas de Markov han sido uno de los conceptos probabilísticos más utilizados en la ciencia y la estadística.

Andrei Markov nació el 14 de junio de 1856 en Ryazan, Rusia. Se graduó de la Universidad de San Petersburgo en 1878 y se convirtió en profesor de matemática en 1886. Sus primeros esfuerzos de investigación se centraron en la teoría de números y el análisis, y abordaron temas como las fracciones continuas y la convergencia de series infinitas. 

Después de 1900, Markov recurrió cada vez más a la teoría de la probabilidad, en la que lograría su mejor trabajo. Siguiendo los pasos de su maestro Pafnuty Lvovich Chebyshev, Markov aplicó su conocimiento de fracciones continuas a la probabilidad. Comenzó el estudio de las relaciones entre variables aleatorias dependientes, lo que sería muy importante para trabajar posteriormente en procesos estocásticos. Por ejemplo, Markov pudo probar el teorema del límite central, el resultado más importante de la estadística matemática, bajo supuestos más generales sobre la estructura de dependencia de las variables aleatorias que se están sumando. 

Estos resultados son de fundamental importancia para el estudio de series de tiempo, o datos ordenados cronológicamente, donde los valores futuros dependen, de manera estocástica, de los datos presentes y pasados. En particular, Markov inventó y estudió las cadenas de Markov, que son esencialmente secuencias de variables aleatorias en las que la estructura probabilística de un valor futuro solo depende de su predecesora inmediata. Desde entonces, esta estructura simple ha demostrado ser aplicable a una variedad de problemas científicos, al mismo tiempo que es matemáticamente manejable. La invención de las cadenas de Markov constituye un primer paso en el estudio de los procesos estocásticos, por lo que Markov es posiblemente el fundador de esta importante rama de la probabilidad. Más tarde, a principios del siglo XX, Norbert Wiener y Andrei Kolmogorov generalizarían los primeros trabajos de Markov sobre procesos estocásticos.

Markov murió el 20 de julio de 1922 en San Petersburgo, Rusia. Representa un vínculo importante en la secuencia de los grandes probabilistas rusos, incluidos Chebyshev y Kolmogorov. El trabajo de Markov está citado en gran medida en la teoría de la probabilidad y ahora es clásico por su importancia e influencia.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Joseph Lagrange ha sido descrito como el último gran matemático del siglo XVIII. Sus ideas matemáticas fueron altamente originales e influyentes, allanando el camino para los estudios más abstractos del siglo XIX. Quizás su contribución más importante radique en su formulación mecanicista del universo, dando fórmulas matemáticas exactas para las leyes que gobiernan el movimiento y la mecánica. 

Joseph-Louis Lagrange nació el 25 de enero de 1736 en Turín, Italia. Su nombre al nacer fue Giuseppe Lodovico Lagrangia, pero más tarde adoptó la formulación francesa Joseph-Louis Lagrange. El padre de Lagrange fue Giuseppe Francesco Lodovico Lagrangia, y su madre fue Teresa Grosso. Su familia era mayoritariamente de descendencia francesa, aunque la madre de Lagrange era hija única de un médico de Turín. Lagrange fue el mayor de 11 hijos, la mayoría de los cuales murieron durante la infancia. El padre de Lagrange ocupó el cargo de tesorero de la Oficina de Obras Públicas y Fortificaciones en Turín. A pesar de esta prestigiosa posición la familia vivía modestamente.  

Lagrange originalmente estaba orientado a una carrera en derecho, pero una vez que comenzó a estudiar física reconoció su propio talento para la matemática. Al principio desarrolló un interés por la geometría, pero a los 17 años se volcó hacia el análisis. Su primer artículo (1754) desarrolló un cálculo formal, dándose cuenta luego que Gottfried Leibniz ya conocía. Posteriormente comenzó a trabajar en el problema de la tautócrona e inició el desarrollo de su cálculo de variaciones. Esta fue esencialmente una aplicación de las ideas del cálculo a conjuntos de funciones, en lugar de considerar una sola función. 

En 1755 Lagrange envió sus primeros resultados sobre este nuevo cálculo de variaciones a Leonhard Euler. Lagrange desarrolló esta pieza original y muy útil de matemática cuando tenía sólo 19 años. Al final de su vida consideró que fue su contribución más importante. Euler expresó su interés en el novedoso método para resolver problemas de optimización y, como resultado de su creciente renombre, Lagrange fue nombrado profesor en la Royal Artillery School en Turín en 1755. Esta posición era mal paga, y Lagrange se sintió poco apreciado por sus conciudadanos, lo que le llevó a abandonar posteriormente Italia. 

Al año siguiente, Lagrange aplicó su método a la mecánica. Fue capaz de describir la trayectoria de un objeto sujeto a ciertas fuerzas como solución a un problema de optimización en el cálculo de variaciones. Esta elegante formulación matemática de la mecánica revolucionaría el estudio de los sistemas dinámicos.  

Mientras tanto, se fundó la Real Academia de Ciencias de Turín, a la que Lagrange realizó numerosas contribuciones fundamentales durante la próxima década. Sus trabajos desde este período de tiempo hasta alrededor de 1770 incluyen material sobre el cálculo de variaciones, ecuaciones diferenciales, cálculo de probabilidades, mecánica celeste y movimiento de fluidos. Desarrolló la técnica de integración por partes, tan familiar para los estudiantes de cálculo, y ganó varios premios ofrecidos por la Academia de Ciencias de París, por su destacada labor sobre los movimientos de la Luna y otros cuerpos celestes. El sistema de mecánica de Lagrange estableció el principio de acción mínima: que una partícula elige la trayectoria que minimiza la energía, base de la dinámica. Muchos matemáticos franceses, incluidos Jean Le Rond d’Alembert y Pierre-Simon Laplace, reconocieron la excelente calidad de su trabajo. 

En 1763 Lagrange fue invitado a París, donde fue recibido con entusiasmo por la comunidad matemática del  lugar. D’Alembert intentó asegurarle a Lagrange una posición superior en Turín, pero las promesas no se materializaron. Como resultado, Lagrange aceptó una oferta para cubrir el puesto vacante de Euler en Berlín en 1766, lo que inició el segundo período científico de la vida de Lagrange. 

Lagrange se hizo amigo de Johann Heinrich Lambert y de Johann Bernoulli, y fue nombrado director de la Academia de Ciencias de Berlín. No tenía deberes de enseñanza, lo que le permitió centrarse en su investigación matemática. Lagrange se casó con su prima, Vittoria Conti, en 1767, y aunque no tuvieron hijos estuvieron juntos durante 16 años, hasta que la salud de Vittoria disminuyó y murió en 1783 después de una prolongada enfermedad. 

Mientras estuvo en Berlín, Lagrange disfrutó de la participación continua y del éxito en las competiciones de París, haciendo contribuciones sobresalientes al problema de los tres cuerpos. Además de estos concursos públicos, Lagrange desarrolló su propio trabajo personal sobre mecánica celeste, publicando varios artículos importantes desde 1782 en adelante. Mientras tanto, ya había comenzado a investigar ciertos problemas en álgebra, resolviendo completamente una célebre ecuación indeterminada planteada por Pierre de Fermat en 1768. Sobre la base del trabajo anterior de Euler, Lagrange demostró que cada entero se puede expresar como la suma de, como máximo, cuatro cuadrados perfectos (1770); caracterizó los números primos a través de un criterio de divisibilidad y desarrolló aún más la teoría de las formas cuadráticas (1775), abriendo vías de investigación futura para Carl Friedrich Gauss y Adrien-Marie Legendre. Dio una exposición del método de descenso infinito, inspirado en Fermat, y utilizó el método de las fracciones continuas. 

Hizo una contribución particularmente importante al análisis en 1770, cuando dio un desrrollo de la serie que involucraba las raíces de una ecuación dada, que tuvo útiles aplicaciones científicas. La fórmula de Lagrange demostró ser de gran interés para los matemáticos, ya que la mayoría de los grandes analistas del siglo XIX, incluido Augustin-Louis Cauchy, estudiaron las consecuencias de esta idea. Este trabajo, en conjunto con el de Alexandre Vandermonde, revela el concepto del grupo de permutaciones, que luego sería desarrollado por Evariste Galois

Lagrange también contribuyó a la mecánica de fluidos en la década de 1780, a las raíces imaginarias de las ecuaciones algebraicas en la década de 1770 y al análisis infinitesimal de 1768 a 1787. Su trabajo sobre la integración de ecuaciones diferenciales, que se extiende sobre las ideas de Euler, representa un primer paso en la teoría de las funciones elípticas, que atraerían mucho interés en el siglo XIX. También se debe mencionar su trabajo sobre ecuaciones diferenciales parciales, ya que condujo a la resolución de varios problemas. Su trabajo en probabilidad es de menor importancia. 

Las considerables contribuciones de Lagrange a la mecánica estaban dispersas en varias publicaciones, y las resumió en un tratado de 1788. Por esta época Lagrange se había establecido en París. Aunque Turín había intentado atraer a Lagrange para que regresara a su ciudad natal, no se sintió ansioso por abandonar Berlín hasta la muerte de su esposa en 1783. Pero los matemáticos franceses, que solicitaron agresivamente su presencia, lograron atraer a Lagrange. En 1787 se convirtió en miembro de la Academia de Ciencias, donde superó la caótica agitación política de las décadas posteriores. 

En 1792 Lagrange se casó con Renée-Françoise-Adélaïde Le Monnier, con quien también tuvo un feliz matrimonio. Durante el comienzo de la fase parisina de su carrera, la actividad de Lagrange se redujo en cierta medida. Participó activamente en la Asamblea Constituyente de 1790 sobre la estandarización de pesos y medidas, y más tarde enseñó análisis en la recién fundada École Polytechnique hasta 1799. Después de que Napoleón ascendió al poder, Lagrange fue nombrado gran oficial de la Legión de Honor y en 1808 obtuvo un cargo en el imperio. Murió la mañana del 11 de abril de 1813 en París. Las universidades de toda Europa anunciaron su muerte, y Laplace dio su oración fúnebre.  

Lagrange hizo extensas contribuciones a muchas áreas de la matemática; sus trabajos a menudo abrían nuevas áreas de investigación (como las funciones elípticas, las formas cuadráticas y el cálculo de variaciones). Lo más significativo fue su formulación de la mecánica, a veces llamada mecánica lagrangiana, que esencialmente mecanizó la comprensión del universo físico. Este demostró ser un modo poderoso e influyente de describir el mundo conocido y continúa afectando la investigación matemática en la actualidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

 

Read Full Post »

Older Posts »