Feeds:
Entradas
Comentarios

Posts Tagged ‘Platón’

En el programa de Hilbert estaba implícita la esperanza de que la noción sintáctica de la demostración captara la noción semántica de la verdad. Kurt Gödel se topó con el sorprendente descubrimiento de que este no era el caso de la teoría de tipos y lenguas relacionadas adecuadas para la aritmética, siempre que se insistan en las siguientes suposiciones:

  1. El conjunto de teoremas (enunciados probables) es efectivamente enumerable, en virtud de la noción de la prueba que es decidible.
  2. El conjunto de afirmaciones verdaderas de la matemática es ω-completo en el siguiente sentido: dada cualquier fórmula φ(x), que contiene una variable libre x de tipo N, la sentencia universal ∀x ε N, φ(x) será verdadera si φ(n) Es verdadera para cada número n.
  3. El lenguaje es consistente.

En realidad, Gödel también hizo una suposición algo más fuerte, que, como el matemático estadounidense John Barkley Rosser más tarde mostró, podía ser reemplazada asumiendo la consistencia. El ingenioso argumento de Gödel se basó en la observación de que las declaraciones sintácticas sobre el lenguaje de la matemática pueden traducirse en declaraciones de la aritmética, por lo tanto, en el lenguaje de la matemática. Fue inspirado en parte por un argumento que supuestamente se remonta a los antiguos griegos y que fue algo como esto: Epiménides dice que todos los cretenses son mentirosos; Epiménides es un cretense; por lo tanto Epiménides es un mentiroso. Bajo los supuestos 1 y 2, Gödel construyó una declaración matemática g que es verdadera pero no demostrable. Si se supone que todos los teoremas son verdaderos, se deduce que ni g ni ¬g es un teorema.

Ningún matemático duda de la suposición 1. Al mirar una supuesta prueba de un teorema, adecuadamente formalizado, es posible para un matemático, o incluso para un ordenador, decir si es una prueba. Al enumerar todas las pruebas en, digamos, orden alfabético, se obtiene una enumeración efectiva de todos los teoremas. Los matemáticos clásicos también aceptan la suposición 2 y, por tanto, de mala gana acuerdan con Gödel que, contrariamente a la expectativa de Hilbert, hay verdaderas declaraciones matemáticas que no son demostrables.

Sin embargo, los intuicionistas moderados podrían sacar una conclusión diferente, porque no están comprometidos con la suposición 2. Para ellos, la verdad de la afirmación universal ∀x ε N, φ(x) sólo puede conocerse si se conoce la verdad de φ(n) para cada número natural n, de manera uniforme. Este no sería el caso, por ejemplo, si la prueba de φ(n) aumenta en dificultad, por lo tanto en longitud, con n. Por lo tanto, los intuicionistas moderados podrían identificar la verdad con la probabilidad y no sentirse molestados por el hecho de que ni g ni ¬g sean verdaderos, ya que en primer lugar no creerían en el principio del tercero excluido.

Los intuicionistas siempre han creído que, para que una declaración sea verdadera, su verdad debe ser cognoscible. Por otra parte, los intuicionistas moderados podrían conceder a los formalistas que decir que una afirmación se sabe que es verdadera es decir que se ha demostrado. Sin embargo, algunos intuicionistas no aceptan el argumento anterior. Al afirmar que la matemática es independiente del lenguaje, los intuicionistas afirmarían que en la demostración metamatemática de Gödel de su teorema de la incompletitud, citar la ω-completitud para establecer la verdad de una declaración universal produce después de todo una prueba uniforme de ésta última.

Gödel se consideraba un platónico, en la medida en que creía en una noción de verdad absoluta. Él tomó por hecho, como hacen muchos matemáticos, que el conjunto de afirmaciones verdaderas es ω-completo. Otros lógicos son más escépticos y quieren reemplazar la noción de verdad por la de la verdad en un modelo. De hecho, el propio Gödel, en su teoría de la integridad, había demostrado que para que un enunciado matemático fuera demostrable es necesario y suficiente que sea cierto en cada modelo. Su teorema de la incompletitud demostró ahora que la verdad en cada modelo ω-completo no es suficiente para la demostración.

Anuncios

Read Full Post »

El descubrimiento de Bertrand Russell de una contradicción oculta en el intento de Friedrich Frege de formalizar la teoría de conjuntos hizo que algunos matemáticos se preguntaran cómo podía asegurarse de que no existían otras contradicciones. El programa de Hilbert, llamado formalismo, debía concentrarse en el lenguaje formal de la matemática y estudiar su sintaxis. En particular, la consistencia de la matemática, que puede ser tomada, por ejemplo, como la afirmación metamatemática de que la afirmación matemática 0 = 1 no es demostrable, debía ser demostrable dentro de la sintaxis de la matemática. Este proyecto de formalización sólo tenía sentido si la sintaxis de la matemática era consistente, pues de lo contrario toda afirmación sintáctica sería demostrable, incluso aquella que afirma la consistencia de la matemática.

Desafortunadamente, una consecuencia del teorema de incompletitud de Gödel es que la consistencia de la matemática puede ser probada solamente en un lenguaje que es más fuerte que el lenguaje de la matemática misma. Sin embargo, el formalismo no está muerto -de hecho, la mayoría de los matemáticos puros son formalistas tácitos- pero el intento ingenuo de probar la consistencia de la matemática en un sistema más débil tuvo que ser abandonado.

Aunque nadie, excepto un intuicionista extremista, negará la importancia del lenguaje de la matemática, la mayoría de los matemáticos son también filosóficos realistas que creen que las palabras de este lenguaje denotan entidades en el mundo real. Siguiendo al matemático suizo Paul Bernays (1888-1977), esta posición también se llama platonismo, ya que Platón creía que las entidades matemáticas realmente existen.

Paul Isaac Bernays

 

Read Full Post »

Quizás la contribución más importante a los fundamentos de la matemática hecha por los antiguos griegos fue el método axiomático y la noción de demostración. Esto fue enfatizado en la Academia de Platón y alcanzó su punto más alto en Alejandría alrededor del año 300 a.C. con los Elementos de Euclides. Esta noción sobrevive hoy, excepto por algunos cambios cosméticos.

La idea es ésta: hay una serie de verdades matemáticas básicas, llamadas axiomas o postulados, de las cuales se pueden derivar otras afirmaciones verdaderas en un número finito de pasos. Puede ser necesario un considerable ingenio para descubrir una demostración. Pero ahora se sostiene que debe ser posible comprobar mecánicamente, paso a paso, si una pretendida prueba es realmente correcta, y hoy en día una computadora debe ser capaz de hacer esto. Los enunciados matemáticos que se pueden probar son llamados teoremas, y se deduce que, en principio, un dispositivo mecánico, como un ordenador moderno, puede generar todos los teoremas.

Dos preguntas sobre el método axiomático fueron dejadas sin respuesta por los antiguos: ¿son todas las verdades matemáticas axiomas o teoremas? (esto se conoce como completitud), y ¿se puede determinar mecánicamente si una determinada afirmación es un teorema? (esto se llama decibilidad). Estas preguntas fueron planteadas implícitamente por David Hilbert (1862-1943) alrededor del 1900 y fueron resueltas más tarde por la negativa: la completitud en manos del lógico austro-americano Kurt Gödel (1906-1978) y la decibilidad en manos del lógico estadounidense Alonzo Church (1903-95) .

El trabajo de Euclides se ocupaba de teoría de números y geometría, esencialmente toda la matemática entonces conocida. Desde mediados del siglo XX, un grupo gradualmente cambiante de matemáticos en su mayoría franceses bajo el seudónimo de Nicolas Bourbaki ha tratado de emular a Euclides en la escritura de un nuevo Elementos de Matemática basado en su teoría de las estructuras. Desafortunadamente, apenas esbozaron las nuevas ideas de la teoría de la categoría.

Read Full Post »

Older Posts »