Feeds:
Entradas
Comentarios

Posts Tagged ‘René Descartes’

John Wallis fue el mejor matemático inglés de su tiempo; de hecho, es el primer matemático británico importante del siglo XVII. No solo estimuló el estudio de la matemática, convirtiéndolo en un tema atractivo para otros, sino que influyó directamente en Sir Isaac Newton a través de sus primeros descubrimientos en el área del cálculo diferencial.

John Wallis nació el 23 de noviembre de 1616 en Ashford, Inglaterra. Su padre, también llamado John Wallis, era un ministro ampliamente respetado en Ashford. La madre de Wallis, Joanna Chapman, era la segunda esposa del padre de Wallis, y Wallis fue el tercero de cinco hijos. El padre de Wallis murió cuando Wallis tenía seis años.

La educación temprana de Wallis fue en Ashford, pero cuando la peste golpeó, su madre lo envió a la escuela primaria de James Movat en 1625. Primero mostró su potencial allí, entrenando tanto su memoria como su comprensión. A lo largo de la vida, Wallis fue capaz de lograr grandes hazañas de cálculo mental, incluso calculando en su mente raíces cuadradas de números irracionales. Luego, Wallis asistió a la escuela de Martin Holbeach en Felsted de 1631 a 1632, donde dominó el griego, el latín y el hebreo. Aunque aprendió lógica allí, no recibió capacitación en matemática hasta que su hermano le enseñó las reglas de la aritmética durante unas vacaciones de Navidad. El tema le atraía como una distracción, pero no se dedicaba formalmente a la matemática por entonces.

Wallis luego fue al Emanual College, Cambridge, en 1632, donde estudió ética, metafísica, geografía, astronomía y medicina. Más tarde defendió la nueva teoría de su maestro Glisson sobre la circulación de la sangre en debate público. Wallis completó su licenciatura en 1637 y su maestría en 1640. Luego fue ordenado y sirvió como capellán en varios puestos en los próximos años.

La carrera de Wallis dio un giro cuando descifró con éxito un mensaje realista codificado en solo dos horas. Esto lo hizo popular entre los parlamentarios, y Wallis continuó brindándoles servicio como criptógrafo durante la Guerra Civil. Como recompensa por su trabajo, Wallis recibió el cuidado de la iglesia de San Gabriel de Fenchurch Street en Londres en 1643. Su madre murió ese año, dejando a Wallis una herencia considerable.

Wallis transitó brevemente con una beca en Cambridge en 1644, pero se vio obligado a abandonar esto cuando se casó con Susanna Glyde en 1645. En Londres comenzó a reunirse regularmente con un grupo de científicos interesados en discutir medicina, geometría, astronomía y mecánica; Este grupo más tarde se convirtió en la Royal Society. A través de las reuniones se encontró con la obra Clavis Mathematica de William Oughtred en 1647, que devoró en unas pocas semanas. Este trabajo estimuló el amor de Wallis por la matemática y lo alentó a comenzar sus propias investigaciones.

Wallis primero escribió su Treatise on Angular Sections y descubrió métodos para resolver ecuaciones de grado cuatro. En 1649 Oliver Cromwell lo nombró para la cátedra de geometría saviliana en Oxford; sus oponentes sostuvieron que obtuvo el puesto por razones políticas, aunque parece que el nombramiento estaba justificado, basado en el servicio excepcional que Wallis brindó. Wallis ocupó el cargo durante más de 50 años, hasta su muerte; también fue nombrado guardián de los archivos de la universidad en 1657. En 1648 Wallis discrepó públicamente con la moción para ejecutar a Carlos I. Como resultado, Carlos II recompensó a Wallis cuando se restableció la monarquía: su nombramiento en la silla saviliana continuó, y también se convirtió en capellán real.

La principal contribución matemática de Wallis radica en su trabajo sobre los fundamentos del cálculo. Primero estudió el trabajo de Johannes Kepler y René Descartes, y luego extendió sus primeros resultados. Su Arithmetica Infinitorum de 1657 establece un desarrollo infinito del producto para la mitad del número pi, que Wallis descubrió en el curso del  cálculo de una determinada integral. Wallis descubrió cómo integrar funciones de la forma 1 - x^2 elevadas a una potencia entera, y extendió sus reglas a potencias fraccionarias mediante interpolación, basándose en las nociones de continuidad de Kepler. Su trabajo en esta área influiría más tarde en Newton, quien llevó los conceptos básicos del cálculo a un grado mucho mayor.

Link de interés

El Tract on Conic Sections de Wallis de 1655 presentaba parábolas y círculos como conjuntos de puntos que satisfacen ecuaciones algebraicas abstractas. Este enfoque, familiar para el lector moderno, difiere de la definición clásica, que describe estas curvas como la intersección de planos inclinados con un cono (se trata de secciones cónicas). Así, el estilo de Wallis recordaba la geometría analítica de Descartes. El Treatise of Algebra de 1685 de Wallis muestra su aceptación de las raíces negativas y complejas. Aquí Wallis resuelve muchas ecuaciones algebraicas y proporciona una gran cantidad de material histórico. Restauró algunos de los textos griegos antiguos, incluidas las obras de Aristarco de Samos y Arquímedes de Siracusa.

Wallis, además de su obra matemática, escribió sobre una variedad de otros temas: etimología, lógica y gramática, entre otros. Se involucró en una intensa disputa con el filósofo Thomas Hobbes, quien en 1655 afirmó haber cuadrado el círculo, lo que equivalía a descubrir un número racional cuyo cuadrado sea el número pi. Wallis refutó esta falsa afirmación públicamente, y siguió una disputa bastante desagradable que terminó solo cuando Hobbes murió.

Wallis dormía mal, tal vez porque su mente activa no lograba descansar fácilmente. Murió el 28 de octubre de 1703 en Oxford, Inglaterra. Es recordado principalmente por su trabajo sobre los fundamentos del cálculo, que influyó en matemáticos posteriores como Newton; sin embargo, sus trabajos matemáticos se extendieron también a la geometría y el álgebra. También es notable que Wallis fue el primer gran matemático inglés; no tenía predecesores ni maestros, pero a su paso la matemática se convirtió en un tema más popular.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

François Viète, junto con Pierre de Fermat, René Descartes y Blaise Pascal, fue uno de los principales fundadores de las matemáticas europeas. Se le conoce como el «padre del álgebra» debido a su introducción de tantos conceptos y notaciones importantes que todavía están en uso. Sin embargo, su trabajo matemático no se limitó al álgebra, sino que también contribuyó con la geometría, la trigonometría y el análisis.

Viète nació en 1540 en Fontenay-le-Comte, una ciudad en la provincia de Poitou, Francia. Su padre, Étienne Viète, era abogado en Fontenay-le-Comte, y su madre era Marguerite Dupont. Viète siguió la profesión de su padre y se graduó con una licenciatura en derecho de la Universidad de Poitiers en 1560. Durante cuatro años siguió una carrera legal antes de abandonarla para dedicarse a la ciencia y la matemática. Viète se convirtió en tutor de la hija de un noble en la ciudad de La Rochelle.

En los años siguientes, las guerras de religión francesas continuaron causando furor entre los católicos romanos y los protestantes. Viète era un hugonote, y naturalmente se alió con los protestantes. Más tarde en su vida se convirtió en víctima de persecución religiosa. Antes de 1570, cuando se fue de La Rochelle a París, trabajó en varios temas de matemática y ciencias, y publicó su primer trabajo matemático, el Canon Mathematicus seu ad triangular, en 1571. Este libro fue diseñado para proporcionar material matemático introductorio pertinente al área de la astronomía; incluía varias tablas trigonométricas, así como técnicas para estudiar triángulos planos y esféricos. Aquí, Viète primero da una notación para las fracciones decimales siendo un precursor de las notaciones modernas. La notación, especialmente en esta etapa inmadura en la historia de la matemática, era tremendamente importante para el avance del conocimiento, ya que daba un lenguaje conveniente y apropiado para expresar ideas sutiles. Podría decirse que la buena notación sigue siendo de vital importancia para las matemáticas abstractas modernas. Un ejemplo destacado de este punto es el sistema de números arábigos, que es esencialmente una notación que ha facilitado enormemente el cálculo y la teoría de números; otro ejemplo son las notaciones de ecuaciones algebraicas (con exponentes para potencias de cantidades desconocidas y letras para designar variables o constantes) introducidas en gran parte por el propio Viète.

En 1572, el rey Carlos IX autorizó la masacre de los hugonotes, pero Viète escapó y fue nombrado consejero del gobierno de Bretaña en 1573. En los años posteriores de inestabilidad política trabajó para Enrique III y, después de su asesinato, para Enrique IV. Viète fue nombrado primer consejero real de Enrique III en 1580 pero, después del ascenso del poder católico en París, fue desterrado en 1584 por su fe protestante. Pasó los siguientes cinco años en Beauvoir-sur-Mer, dedicándose a actividades matemáticas.

Enfocó sus labores iniciales en la astronomía, pues deseaba publicar un libro importante, que se convertiría en su Ad harmonicon coeleste, sobre astronomía. Esto nunca se completó, pero cuatro versiones manuscritas han sobrevivido a los estragos del tiempo. Estos manuscritos muestran que Viète se preocupaba principalmente por la geometría y las teorías planetarias de Copérnico y Claudio Ptolomeo.

En 1588, los católicos obligaron a Enrique III a huir de París, y instaron a Viète para que lo acompañara en el exilio. Viète fue nombrado miembro del parlamento del rey en su gobierno en Tours. Un fraile católico asesinó a Enrique III en 1589, y Viète entró al servicio del heredero, Enrique IV. Enrique IV, anteriormente protestante, se basó en gran medida en las habilidades de Viète, quien finalmente decodificó las transmisiones secretas del rey de España, que estaba tramando una invasión de Francia. Es interesante señalar que el rey español Felipe II, confiado en su cifrado, creyó que el conocimiento francés de sus planes militares se logró mediante magia negra. En este caso, fue la matemática en lugar de la brujería quien contribuyó en la tarea.

Estos eventos tuvieron lugar en 1590, y Viète, por su parte, dio conferencias en Tours. Éstas trataron varios supuestos avances en matemática, por ejemplo, había por entonces una prueba de que el círculo podía cuadrarse, y Viète demostró que estos argumentos eran erróneos. Quizás muestra una debilidad de carácter en él que se convirtiera al catolicismo romano en 1593, siguiendo el ejemplo de su señor, que probablemente se convirtió por razones políticas. Como resultado, Viète regresó a París.

Poco después, Viète participó en una competencia con el matemático holandés Adriaan von Roomen, quien planteó un problema que involucraba una ecuación de grado 45. Viète resolvió este problema y planteó una pregunta geométrica propia. Como resultado de este intercambio, surgió una amistad entre Roomen y Viète. Este último  continuó al servicio del rey hasta su despido en 1602. Murió el 13 de diciembre de 1603 en París, Francia.

Viète es considerado el fundador preeminente del álgebra. Por supuesto, hay numerosos matemáticos árabes (sin mencionar a los griegos) que hicieron contribuciones fundamentales al dar forma a las concepciones de lo que constituye la aritmética (por ejemplo, la introducción del número cero y los números negativos). Sin embargo, Viète ciertamente produjo el primer sistema algebraico completo con una notación consistente. En Introduction to the Analytic Art, publicado en Tours en 1591, Viète usó símbolos alfabéticos familiares para designar variables y constantes, usando vocales para incógnitas y consonantes para cantidades conocidas. Más tarde, Descartes introdujo la convención de que las letras del final del alfabeto deberían designar incógnitas, mientras que las letras del principio del alfabeto debían indicar cantidades conocidas. Sin embargo, Viète hizo una defensa convincente de su sistema de notación; la literatura anterior sobre ecuaciones algebraicas se basaba en expresiones inconvenientes, y con frecuencia las ecuaciones se describían con oraciones en lugar de símbolos abstractos. El uso de símbolos facilitó el cómputo.

Viète hizo poco uso de la matemática árabe, prefiriendo el estilo de los algebraistas italianos como Girolamo Cardano. Debería haber investigado los escritos árabes con más cuidado, ya que muchas de las ideas que presentó ya eran conocidas por los árabes. Sin embargo, Viète estableció un marco algebraico superior para los matemáticos europeos. Además, desarrolló la teoría de las ecuaciones algebraicas, aunque todavía adjuntaba una interpretación geométrica a las cantidades, como lo hacían los griegos. En esencia, esto limitaba los tipos de ecuaciones que podía examinar (por ejemplo, ecuaciones homogéneas). El siguiente nivel de abstracción algebraica fue iniciado por la siguiente generación, incluidos Descartes y Fermat. Sin embargo, la anotación de Viète para las ecuaciones algebraicas fue adoptada con ajustes menores por estos sucesores. Uno puede medir su influencia observando que el término coeficiente para la constante conocida que multiplica una variable desconocida se debe a Viète.

Además del trabajo estrictamente algebraico, Viète también investigó sobre análisis, geometría y trigonometría. Produjo métodos numéricos tempranos para resolver ecuaciones algebraicas, dio una nueva aproximación decimal para pi (así como una caracterización infinita del producto) y presentó métodos geométricos para duplicar el cubo y trisecar un ángulo.

El trabajo matemático de Viète es claramente parte de un movimiento intelectual de Arabia a Italia a Francia, y sus ideas dependían de varios contemporáneos, así como de sus predecesores, como Cardano y Leonardo Fibonacci. Pero su sistema algebraico representa la siguiente etapa en el pensamiento matemático sobre el álgebra, ya que proporcionó una base para futuras exploraciones y generalizaciones. A pesar de que se consideraba a sí mismo como un aficionado (y, de hecho, carecía de formación formal en matemáticas), pudo hacer contribuciones intelectuales que afectarían un cambio de paradigma en los círculos matemáticos.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Bertrand Russell fue una de las personalidades matemáticas más coloridas del siglo XX, y se encuentra entre los lógicos más importantes de la era moderna. Creía en el potencial de que toda la matemática se redujera a la lógica y ejerció mucho esfuerzo para validar este paradigma. Russell también fue un activo filósofo y revolucionario social, aplicando sus ideas lógicas a la ciencia, la ética y la religión.

Resultado de imagen para russell

Bertrand Russell nació el 18 de mayo de 1872 en Ravenscroft, Gales. Era nieto de lord John Russell. Su madre y su padre murieron en 1874 y 1876, respectivamente, por lo que sus abuelos lo criaron. Este abuelo había servido dos veces como primer ministro bajo la reina Victoria, pero murió en 1878 y su abuela continuó con la educación del niño. Recibió educación privada al principio, y luego fue instruido en el Trinity College, en Cambridge, donde obtuvo los primeros logros en la matemática.

Russell se convirtió en académico, y finalmente fue elegido miembro de la Royal Society en 1908. Pasó sus primeros años en su programa centrado en la lógica, creyendo que toda la matemática podía reducirse a afirmaciones lógicas. En este sentido, era seguidor de Friedrich Ludwig Gottlob Frege, quien tenía una filosofía similar. El trabajo de Russell de 1910 sobre los Principia Mathematica, escrito junto con Alfred North Whitehead, estableció que las pruebas matemáticas podrían reducirse a pruebas lógicas. Los primeros volúmenes de este trabajo trataron sobre teoría de conjuntos, aritmética y lateoría de la medida; un cuarto volumen, sobre geometría, no fue completado. Parte de este enfoque, inspirado en las ideas de Frege, fue expresar los números y otros objetos matemáticos como conjuntos de clases que comparten una propiedad común. Este ambicioso proyecto perdió fuerza en los últimos años, probablemente debido a las tendencias filosóficas que se alejan del logicismo.

Antes de los Principia, Russell adquirió fama a través de la construcción de la llamada paradoja de Russell. Formó el conjunto (conjunto A) de todos los conjuntos que tienen la propiedad de que no son miembros de sí mismos. Luego uno hace la pregunta: ¿Es A (visto como un elemento) un miembro del conjunto A? Esto no se puede resolver como verdadero o falso, ya que cualquiera de las respuestas conduce a una contradicción. Esto demostró el problema fundamental de tomar colecciones de conjuntos y suponer que dicha colección es en sí misma un conjunto. Kurt Gödel utilizará posteriormente este concepto de autorreferencia para producir sus teoremas de incompletitud. 

La solución de Russell a la paradoja fue desarrollar su teoría de tipos, principalmente desarrollada en su lógica matemática de 1908, basada en la teoría de tipos. En esto Russell describió una jerarquía de clases para la cual la idea de conjunto está especialmente definida en cada nivel. Otras resoluciones a la paradoja han resultado del debilitamiento del poder del axioma básico de comprensión formulado por George Cantor, que establece que siempre se pueden reunir objetos que comparten una propiedad común en un conjunto. La consecuencia inmediata de la paradoja fue poner en duda el programa lógico propuesto por David Hilbert, que buscaba establecer rigurosamente los fundamentos de la lógica matemática y la teoría de conjuntos. Parecía que incluso el concepto intuitivo de conjunto se proyectaba en la sombra.

Además de estas importantes contribuciones a la lógica, Russell también fue famoso por su «filosofía analítica», que intentaba plantear cuestiones filosóficas en el riguroso marco de la lógica matemática. Por supuesto, este enfoque computacional de la filosofía tiene una larga historia, que se remonta a René Descartes y otros matemáticos.

La vida personal y pública de Russell interfirió con el avance de su carrera. Fue declarado culpable de actividad contra la guerra en 1916, y esto resultó en su despido del Trinity College. Dos años más tarde fue nuevamente condenado y sometido a una breve pena de prisión. Durante su encarcelamiento, escribió su famosa Introducción a la Filosofía Matemática (1919). Tropezó con cuatro matrimonios que estuvieron plagados de asuntos extra matrimoniales, e incluso fue despedido de un puesto de profesor en el City College de Nueva York en 1940 después de que un juez dictaminó que era moralmente incapaz. Se postuló (pero no fue elegido) para el Parlamento tres veces; se convirtió en Earl Russell en 1931 después de la muerte de su hermano. Abrió una escuela experimental con su segunda esposa a finales de los años veinte. Sus sentimientos contra la guerra ganaron una mejor aceptación en las décadas de 1950 y 1960, cuando fue reconocido como líder en el movimiento antinuclear. El manifiesto de Russell-Einstein de 1955 exigía el abandono de las armas nucleares. En 1957, Russell organizó la Conferencia Pugwash, una convención de científicos contra las armas nucleares, y se convirtió en presidente de la Campaña por el Desarme Nuclear en 1958. Russell fue arrestado nuevamente en 1961 por protestas nucleares. 

Después de una vida llena de matemática, filosofía y protesta pública, Russell murió el 2 de febrero de 1970 en Penrhyndeudraeth, Gales. Fue reconocido por sus extensas contribuciones a la literatura y la ciencia, ganando el Premio Nobel de literatura en 1950. Es mejor conocido por su paradoja y su posterior resolución a través de la teoría de tipos, pero también a través de sus investigaciones posteriores sobre el logicismo y el problema de la incompletitud estudiado por Gödel. El pensamiento de Russell ha sido enormemente influyente en la lógica, la matemática y la filosofía, así como en la ética, la religión y la responsabilidad social. 

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Older Posts »