Feeds:
Entradas
Comentarios

Posts Tagged ‘Sofia Vasilyevna Kovalévskaya’

Karl Weierstrass ha sido descrito como el padre del análisis moderno. De hecho, sus rigurosos estándares de rigor se han incorporado a la disciplina moderna del análisis, y muchos de los métodos y temas se deben a él. Weierstrass también hizo contribuciones fundamentales al análisis complejo y la teoría de las funciones elípticas.

Karl Theodor Wilhelm Weierstrass nació el 31 de octubre de 1815 en Ostenfelde, Alemania. Su padre, Wilhelm Weierstrass, era un funcionario público altamente educado. La madre de Weierstrass se llamaba Theodora Vonderforst, y Weierstrass era el mayor de cuatro hijos. Cuando Weierstrass tenía ocho años su padre se convirtió en inspector de impuestos, lo que implicaba una constante reubicación. En 1827 murió su madre.

La familia se estableció en 1829 cuando el padre de Weierstrass consiguió un puesto más permanente en Paderborn, y Weierstrass asistió a la escuela secundaria local. Allí se destacó en matemática por encima de todas las materias, y desarrolló una facilidad inusual y amor por esta disciplina. Ya estaba leyendo el famoso Journal de Crelle en 1834 cuando ingresó a un programa de finanzas en la Universidad de Bonn. La carrera de finanzas no era elección de Weierstrass sino de su padre; en rebeldía y con espíritu de aflicción Weierstrass desperdició sus años universitarios con exceso de alcohol y mucho tiempo de dedicación a la esgrima. Aunque no asistía a la mayoría de sus clases, Weierstrass continuó con sus clases privadas.

En 1840, Weierstrass aprobó sus exámenes con excelentes resultados, habiendo demostrado una cierta derivación de Niels Henrik Abel a partir de una ecuación diferencial; su examinador pensó que la prueba era digna de publicación. Weierstrass pasó a enseñar en la escuela secundaria de Münster, y escribió tres artículos entre 1841 y 1842 sobre variables complejas. En estos documentos reformuló el concepto de función analítica en términos de series de potencias convergentes, en oposición al típico enfoque a través de la diferenciación. Mientras tanto, enseñó una variedad de temas, como historia, geografía e incluso gimnasia, y se aburrió por completo. La carga de trabajo era bastante pesada, porque realizaba investigaciones sobre matemática teórica en cada momento libre. Este ajetreo puede haber causado sus problemas de salud posteriores, que comenzaron en 1850: sufrió ataques de mareos, seguidos de náuseas.

Weierstrass trabajó en Brauensberg desde 1848, pero después de la publicación en 1854 de su Toward the Theory of Abelian Functions, que fue ampliamente aclamado por los matemáticos, recibió varias ofertas de universidades destacadas. Este artículo esbozaba la representación de funciones abelianas como series de potencias convergentes, y la Universidad de Königsberg le confirió un doctorado honorario en 1854. Ernst Eduard Kummer intentó conseguir un puesto para Weierstrass en la Universidad de Breslau, pero este intento fracasó. Weierstrass permaneció como profesor titular en Brauensberg hasta 1856, cuando aceptó el trabajo de sus sueños en la Universidad de Berlín. Mientras tanto, publicó un seguimiento de su artículo de 1854, que daba todos los detalles de su método de inversión de integrales hiperelípticas.

El mandato de Weierstrass en Berlín, junto con Kummer y Leopold Kronecker, convirtió a esa escuela en la meca matemática de Alemania en ese momento. Las concurridas conferencias de Weierstrass de los próximos años dan una idea de la diversidad y la profundidad de su investigación matemática: en 1856 discutió la teoría de las funciones elípticas aplicadas a la geometría y la mecánica, en 1859 abordó los fundamentos del análisis y en 1860 impartido conferencias sobre cálculo integral. Sus investigaciones produjeron una función continua que no era diferenciable en ninguna parte; la existencia de una función tan extraña destrozó la excesiva dependencia de la mayoría de los analistas en la intuición, ya que hasta ese momento los matemáticos solo podían concebir la no diferenciabilidad que ocurre en puntos aislados. El curso de Weierstrass de 1863 fundó la teoría de los números reales, un área en la que otros matemáticos como Richard Dedekind y George Cantor, también trabajarían. Él demostró que los números complejos son la única extensión algebraica conmutativa de los números reales, un resultado que Carl Friedrich Gauss declaró anteriormente pero nunca probó.

Los problemas de salud de Weierstrass continuaron y experimentó un colapso total en 1861; se tomó el año siguiente para recuperarse, pero nunca fue el mismo. A partir de ese momento, tuvo un asistente para escribir sus conferencias, y los dolores crónicos en el pecho reemplazaron su mareo.

Weierstrass organizó sus diversas conferencias en cuatro cursos principales: funciones analíticas, funciones elípticas, funciones abelianas y el cálculo de variaciones. Los cursos eran frescos y estimulantes, ya que gran parte del material era su propia investigación innovadora. Es un testimonio del legado de su estilo que los cursos modernos de análisis siguen la progresión de temas de Weierstrass, incluido el concepto de serie de potencia de una función, continuidad y diferenciabilidad y continuación analítica.

Weierstrass colaboró con Kummer y Kronecker de manera rentable durante muchos años, pero luego él y Kronecker se separaron de las ideas radicales de Cantor; Weierstrass apoyaba las ideas innovadoras de Cantor en teoría de conjuntos, pero Kronecker no podía aceptar las construcciones patológicas. Weierstrass tuvo muchos estudiantes excelentes, algunos de los cuales se convirtieron en matemáticos famosos, como Cantor, Sophus Lie y Felix Klein. Instruyó en privado a Sofia Vasilyevna Kovalévskaya, a quien no se le permitió inscribirse formalmente debido a su género. Weierstrass tuvo una gran relación intelectual con esta mujer, a quien ayudó a encontrar un puesto adecuado.

Weierstrass estaba muy preocupado por el rigor matemático. Sus altos estándares quedaron impresos para la generación siguiente y provocaron una intensiva investigación sobre los fundamentos de la matemática, como la construcción del sistema de números reales. Los estudios de convergencia de Weierstrass lo llevaron a distinguir diferentes tipos, lo que provocó la investigación en varias topologías para espacios de funciones. Estudió el concepto de convergencia uniforme, que preserva la continuidad, e ideó varias pruebas para la convergencia de series y productos infinitos. Su enfoque de publicación fue cuidadoso y metódico, por lo que sus publicaciones fueron pocas pero extremadamente profundas y exactas.

Weierstrass continuó enseñando hasta 1890. Sus últimos años se dedicaron a publicar los trabajos recopilados de Jakob Steiner y Carl Jacobi. Murió de neumonía el 19 de febrero de 1897 en Berlín, Alemania. Sus contribuciones a la matemática, en particular al análisis real y complejo, fueron extensas y de gran alcance, lo que le valió el epíteto de “padre del análisis moderno”. Su influencia también se extendió a través de la gran cantidad de estudiantes talentosos a quienes dirigió y que además desarrolló sus ideas en varias nuevas direcciones. Desde sus humildes comienzos como profesor de secundaria, Weierstrass logró grandes cosas para el campo de la matemática.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

En opinión de algunos historiadores, Sonya Kovalevskaya fue la matemática más grande antes del siglo XX. Hizo contribuciones sobresalientes a la teoría de las ecuaciones diferenciales parciales y también avanzó en el estudio de las funciones elípticas. 

Nacida el 15 de enero de 1850 en Moscú, fue hija de Vasily Korvin-Kukovsky, un noble y oficial ruso, y Yelizaveta Shubert, también aristócrata. Sonya fue educada por una institutriz inglesa y participó en un sofisticado círculo social después de que la familia se mudó a San Petersburgo. Alrededor de los 14 años se interesó por la matemática, aparentemente estimulada por el papel tapiz de la finca campestre de su padre, que consistía en litografías de sus notas sobre cálculo diferencial e integral. Sonya mostró un gran potencial al tomar un curso en 1867 en la academia naval de San Petersburgo. 

Sonya y su hermana Anyuta se suscribieron a la ideología radical de finales del siglo XIX, y ambas no estaban dispuestas a aceptar el estilo de vida tradicional que defendía la sociedad rusa. Por lo tanto, Sonya contrajo matrimonio con Vladimir Kovalevsky, un joven paleontólogo, que hizo posible su deseo de estudiar matemática en una universidad extranjera. En 1869 la pareja se mudó a Heidelberg, y más tarde, en 1871, Sonya llegó a Berlín, donde estudió con Karl Weierstrass. Dado que era mujer, no se le permitió asistir a conferencias; en cambio, recibió instrucción privada de Weierstrass. Para 1874, Kovalevskaya ya había completado tres trabajos de investigación sobre ecuaciones diferenciales parciales e integrales abelianas. Como resultado de este trabajo, ella obtuvo un doctorado en la Universidad de Göttingen. 

A pesar del impresionante talento matemático de Kovalevskaya, no pudo obtener un puesto académico en Europa, por lo que regresó a Rusia para vivir con su esposo. Tuvieron una hija, nacida en 1878. La pareja tuvo trabajos ocasionales durante varios años, pero se separó en 1881. Durante este tiempo, el marido de Kovalevskaya se involucró con una compañía de mala reputación, lo que le llevó a su desgracia y su suicidio en 1883. Solicitando asistencia a Weierstrass, Kovalevskaya obtuvo un puesto en la Universidad de Estocolmo. En Suecia, Kovalevskaya continuó su investigación sobre ecuaciones diferenciales. En 1889 fue elegida para la Academia de Ciencias de Rusia; en el apogeo de su carrera, cayó enferma de neumonía y murió el 10 de febrero de 1891 en Estocolmo. 

Kovalevskaya es famosa por su contribución al campo de las ecuaciones diferenciales parciales. Amplió el trabajo de Augustin-Louis Cauchy y formuló la existencia y la singularidad de las soluciones de manera precisa y general, introduciendo importantes condiciones iniciales y de borde al problema. El teorema de Cauchy-Kovalevskaya resultante dio las condiciones necesarias y suficientes para que exista una solución de una ecuación diferencial parcial dada. 

Kovalevskaya también contribuyó al importante campo de las integrales abelianas, explicando cómo expresar algunas de estas integrales en términos de integrales más simples. Ganó un premio por su memoria Sobre la rotación de un cuerpo sólido sobre un punto fijo (1888), que generalizó el trabajo anterior de Leonhard Euler y Joseph-Louis Lagrange. También estudió el movimiento de los anillos de Saturno, que le valió el epíteto “Musa de los cielos”. Paralelamente a su carrera como matemática, Kovalevskaya también escribió varias obras de literatura que fueron recibidas favorablemente. 

En un período en el que a las mujeres les resultaba sumamente difícil ingresar en el mundo académico, Sonya Kovalevskaya logró sortear los obstáculos e ingresar al campo de la matemática y hacer descubrimientos significativos con un impacto de gran alcance. Sin embargo, independientemente de su género, ciertamente se ubica como una de las matemáticas más talentosas e influyentes del siglo XIX. Su trabajo sobre ecuaciones diferenciales parciales se ha convertido en emblema de los enfoques modernos del tema, al centrarse en cuestiones de existencia y singularidad de soluciones a través de la especificación de ciertas condiciones de contorno. De esta manera, el trabajo de Kovalevskaya guió el desarrollo de la teoría de las ecuaciones diferenciales, que tiene numerosas aplicaciones para la ciencia y la ingeniería en la actualidad.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »