Feeds:
Entradas
Comentarios

Posts Tagged ‘Wilhelm Weber’

Conocido como el «príncipe de las matemáticas», Carl Gauss a menudo se clasifica con Sir Isaac Newton y Arquímedes de Siracusa como el principal pensador; ciertamente, entre sus contemporáneos no tenía rivales, como incluso ellos reconocieron. Conservador, frío, introspectivo, brillante, prolífico, trágico y ambicioso: la vida de Gauss representa la del matemático ideal o arquetípico en muchos aspectos. Su trabajo se extendió a través de las matemáticas puras, incluidas la aritmética y la teoría de números, la geometría, el álgebra y el análisis; a las matemáticas aplicadas, probabilidad y estadística, mecánica y física; a las ciencias de la astronomía, geodesia, magnetismo y dioptras, a labores industriales en ciencia actuarial y valores financieros. Gauss fue un investigador de campo activo, empirista, analista de datos y estadístico, teórico e inventor, con más de 300 publicaciones y más de 400 ideas originales a lo largo de una larga vida de esfuerzo intenso y sostenido. Su genio floreció en una época de poca actividad matemática en Alemania, y es más notable por su estilo solitario. 

Carl Friedrich Gauss nació el 30 de abril de 1777, en Brunswick, Alemania, de padres de clase baja. La madre de Gauss era muy inteligente pero semi-analfabeta, y fue una ferviente defensora de su hijo a lo largo de su larga vida. Su padre trabajó en varias profesiones en un intento de sacar a su familia de la pobreza; de una inclinación práctica, nunca apreció los dones extraordinarios de su hijo, que se manifestaron a una edad temprana. Antes de poder hablar, Carl había aprendido a calcular y, a los tres años, ¡había corregido los errores en los cálculos salariales de su padre! En su octavo año, mientras estaba en su primera clase de aritmética, Gauss encontró una fórmula para la suma de los primeros n números consecutivos. Su maestro, adecuadamente impresionado, le proporcionó al niño literatura para alentar su desarrollo intelectual.  

En 1788, a la edad de 11 años, el niño prodigio ingresó al Gymnasium, donde progresó rápidamente en todos sus estudios, especialmente los clásicos y matemática. Gracias a la benevolencia de sus maestros, el duque de Brunswick le asignó un estipendio, lo que lo hizo independiente; Gauss tenía 16 años en ese momento. En 1792 ingresó en el Collegium Carolinum, que ya poseía una educación científica completa. Sus extensos cálculos e investigaciones empíricas lo habían llevado a una profunda familiaridad con los números y sus propiedades; él ya había descubierto independientemente la ley del movimiento planetario de Bode y el teorema binomial para exponentes racionales. 

Mientras estaba en el Collegium, Gauss continuó sus investigaciones en aritmética empírica y formuló el principio de mínimos cuadrados utilizado en estadística. En 1795 ingresó en la Universidad de Göttingen, y para entonces había redescubierto la ley de la reciprocidad cuadrática, relacionado la media aritmético-geométrica con los desarrollos de series infinitas, conjeturado el teorema del número primo y encontrado algunos resultados tempranos en la geometría no euclidiana. Gauss leyó a Newton, pero la mayoría de los clásicos matemáticos no estaban disponibles; como resultado, casi se convirtió en filólogo. Sin embargo, en 1796 hizo el importante descubrimiento de que el 17-ágono regular podía construirse con regla y compás, un problema pendiente que no se había resuelto durante 2.000 años. Este éxito lo motivó a seguir el camino de la matemática. 

Su destino como matemático quedó establecido, y los años hasta 1800 estuvieron marcados por una notable profusión de ideas. En estilo, Gauss adoptó el rigor de la geometría griega, aunque pensó algebraicamente y numéricamente. Persiguió intensas investigaciones empíricas, seguidas por la construcción de teorías rigurosamente establecidas. Este enfoque de la ciencia aseguraba que había una estrecha conexión entre la teoría y la práctica. 

En 1798, terminada la universidad, Gauss regresó a Brunswick, donde vivió solo y trabajó asiduamente. El año siguiente presentó la prueba del teorema fundamental del álgebra, que establece que cualquier polinomio de grado n tiene exactamente n raíces en los números complejos; con este resultado, la primera de las cuatro pruebas que escribiría para este teorema, obtuvo su doctorado en la Universidad de Helmstedt. El año 1801 marcó dos grandes logros para Gauss: las Disquisitiones arithmeticae (Investigaciones aritméticas) y el cálculo de la órbita del recién descubierto planeta Ceres. El primero fue un resumen sistemático del trabajo previo en teoría de números, en el que resolvió la mayoría de las preguntas pendientes difíciles y formuló conceptos que influirían en la investigación futura durante dos siglos. Introdujo el concepto de congruencia modular, probó la ley de la reciprocidad cuadrática, desarrolló la teoría de las formas cuadráticas y analizó la ecuación ciclotómica. Este libro ganó la fama y el reconocimiento de Gauss entre los matemáticos como su «príncipe», pero su estilo austero aseguró que sus lectores fueran pocos. En cuanto a Ceres, era un planeta nuevo que había sido observado por Giuseppe Piazzi y posteriormente se perdió de vista. Gauss, equipado con sus talentos computacionales, se encargó de ubicar el cuerpo celeste. Con una teoría de órbita más precisa, que utilizaba una órbita elíptica en lugar de circular, y sus métodos numéricos de mínimos cuadrados, pudo predecir la ubicación de Ceres. Debido a que no reveló sus métodos, la hazaña parecía sobrehumana y estableció a Gauss como un genio científico de primera clase. 

Durante la próxima década, Gauss explotó las ideas científicas de los 10 años anteriores. Pasó de matemático puro a astrónomo y científico físico. Aunque fue tratado bien por el duque de Brunswick, que todavía lo apoyaba con un estipendio, Gauss decidió tomar la astronomía como carrera estable en la que podría seguir investigando sin la carga de la enseñanza; en 1807 aceptó la dirección del observatorio de Göttingen. Hizo algunos contactos entre otros científicos que brotaron en colaboraciones, pero tuvo poca interacción con otros matemáticos: intercambió algunas cartas con Sophie Germain y más tarde tuvo a Gustav Peter Lejeune Dirichlet y Bernhard Riemann como estudiantes, pero no trabajó de cerca con ninguna de estas personas. Esto parece deberse a su arraigada introspección, una consecuencia de sus poco apreciados talentos de la infancia, y una ambición de conducción que lo hizo no estar dispuesto a compartir el descubrimiento con los demás. Gran parte del trabajo de Gauss fue inédito, aparentemente porque creía que no era digno de difusión; la verdadera razón parece ser su secretismo posesivo que fomentó la renuencia a revelar sus métodos. 

En este período de tiempo, se fijaron las opiniones políticas de Gauss: un acérrimo conservador, estaba desconcertado por el caos de la revolución y era escéptico de la democracia. En filosofía fue un empirista, rechazando el idealismo de Immanuel Kant y Georg Hegel. También experimentó algo de felicidad personal en este momento; en 1805 se casó con Johanna Osthoff, con quien engendró una hija y un hijo. Pero en 1809 murió en el parto, y Gauss se sumió en la soledad. Aunque pronto se volvió a casar con Minna Waldeck, este matrimonio fue menos feliz, ya que a menudo estaba enferma. Gauss dominó a sus hijas y peleó con sus hijos, que dejaron Alemania para irse a Estados Unidos. 

En sus primeros años en Göttingen, Gauss tuvo otra oleada de ideas matemáticas sobre funciones hipergeométricas, la aproximación de la integración y el análisis de la eficacia de estimadores estadísticos. Sus deberes astronómicos devoraron gran parte de su tiempo, pero continuó con las investigaciones matemáticas en sus momentos libres. En este momento desarrolló muchas de las nociones de la geometría no euclidiana, elaborada desde sus primeros años en Göttingen como estudiante. Sin embargo, su conservadurismo lo hizo reacio a aceptar la verdad de sus descubrimientos, y no estaba dispuesto a enfrentar el ridículo público que acompañaba a tales matemáticas novedosas. Esto condujo a argumentos posteriores sobre la prioridad con János Bolyai, quien desarrolló independientemente la geometría no euclidiana a pesar de la influencia negativa de Gauss. 

Los esfuerzos de Gauss en ciencia también fueron considerables, pero los repasaremos brevemente y nos centraremos en sus aspectos matemáticos. En 1817 Gauss se interesó en la geodesia, la medida de la Tierra. Completó, después de muchos obstáculos administrativos, la triangulación de Hannover 30 años después. Como resultado de su arduo trabajo de campo, inventó el heliotropo, un dispositivo que podría actuar como un faro incluso durante el día al reflejar la luz solar. Su trabajo en geodesia inspiró las primeras matemáticas de la teoría potencial, y el mapeo de una superficie a otra, un concepto importante en la geometría diferencial. También se sintió estimulado a continuar su investigación en estadística matemática, y sus Disquisitiones generales circa superficies curves (Investigaciones generales de superficies curvas) de 1828 alimentarían más de un siglo de actividad en geometría diferencial. En 1825, Gauss obtuvo nuevos resultados sobre la reciprocidad bicuadrática y estaba trabajando en geometría no euclidiana y funciones elípticas. Disminuyendo la velocidad debido a la edad, Gauss recurrió a la física y el magnetismo para una nueva inspiración. En 1829 declaró la ley de menor restricción, y en 1830 contribuyó al tema de la capilaridad y el cálculo de variaciones. El año 1830-1831 fue bastante difícil, ya que Gauss estaba afligido por un problema cardíaco y su esposa murió de tuberculosis. En este momento, Gauss comenzó a colaborar con Wilhelm Weber en magnetismo e inventó el primer telégrafo en 1834. El trabajo de Gauss en 1839 basado en datos de observatorios magnéticos de todo el mundo expresó el potencial magnético en la superficie de la Tierra mediante una serie infinita de funciones esféricas. Su fructífera colaboración con Weber ya había terminado con el exilio de este último por razones políticas. En 1840 Gauss dio un tratamiento sistemático de la teoría potencial como un tema matemático, y en 1841 analizó el camino de la luz a través de un sistema de lentes. 

Desde principios de la década de 1840, la productividad de Gauss disminuyó gradualmente. Tenía más gusto por la enseñanza, y Dedekind y Riemann estaban entre sus alumnos más dotados. Trabajando en ciencia actuarial, recopiló muchas estadísticas de publicaciones periódicas; esta información lo ayudó en sus especulaciones financieras, que lo hicieron bastante rico. Su salud gradualmente falló, hasta que murió en su sueño el 23 de febrero de 1855, en Göttingen. 

Gauss fue uno de los matemáticos más grandes de todos los tiempos. Más tarde, los matemáticos, ignorantes de que Gauss ya se había ido antes que ellos, replicaron muchos de sus descubrimientos. Su nombre está asociado con muchas áreas diversas de la matemática, y su impacto no puede ser sobreestimado.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.
Anuncio publicitario

Read Full Post »

Gran parte del trabajo matemático de finales del siglo XIX se centró en establecer bases rigurosas para temas matemáticos previos, como los conceptos de función, infinito y número. Dedekind trabajó en esta última área, interesándose por la definición del número real y el concepto de continuidad.  

Richard Dedekind nació en Brunswick, Alemania, el 6 de octubre de 1831. Su padre, Julius Dedekind, era profesor de derecho en el Collegium Carolinum de Brunswick, y su madre, Caroline Emperius, era hija de otro profesor de la misma institución. Richard Dedekind era el más joven de cuatro hijos en esta familia intelectual; vivió con su segunda hermana la mayor parte de su vida. De joven, Dedekind asistió al Gymnasium local, donde finalmente cambió su enfoque de la física a la matemática, alegando que la física era demasiado desordenada. En el Collegium Carolinum, al que también asistió Carl Friedrich Gauss, Dedekind dominó la geometría analítica, el cálculo diferencial e integral y la mecánica superior. 

En 1850 ingresó a la Universidad de Göttingen, y desarrolló una estrecha amistad con Bernhard Riemann, mientras asistía a conferencias de Moritz Stern, Wilhelm Weber y Carl Gauss. Sólo dos años más tarde Dedekind obtuvo su doctorado bajo la tutoría de Gauss con una tesis sobre integrales eulerianas; fue a Berlín para asistir a las conferencias de Carl Jacobi y Peter Lejeune Dirichlet, completando el resto de su educación. En 1854 obtuvo una cátedra en la Universidad de Berlín, donde enseñó probabilidad y geometría. También en este momento Dedekind se hizo amigo de Dirichlet, quien expandió sus horizontes sociales e intelectuales. En 1858 Dedekind obtuvo un puesto en el Polytechnikum de Zurich, y cuatro años más tarde regresó a su ciudad natal, Brunswick, donde permaneció hasta su muerte. 

Dedekind es bien conocido entre los matemáticos por kas llamadas cortaduras de Dedekind, que fue un elemento en su construcción de los números reales. Ya había notado la falta de una base verdaderamente rigurosa de la aritmética; él construyó con éxito una definición puramente aritmética de continuidad, y formuló exactamente la noción de número irracional. En este sentido, el trabajo de Dedekind se basa en la antigua teoría de la proporción de Eudoxo de Cnido como base para los números reales, aunque las dos versiones no son exactamente idénticas; Dedekind estableció el hecho de que los postulados euclidianos solos, desprovistos de un principio de continuidad, no podían establecer una teoría completa de los números reales. Sus conceptos han tenido una importancia duradera para el campo del análisis matemático, especialmente a través de su uso del orden para comprender los números reales. 

Publicó estas ideas en un manuscrito de 1872 llamado Stetigkeit und Irrationale Zahlen (Continuidad y números irracionales), que estableció a Dedekind como un investigador líder en los fundamentos de la matemática, junto con George Cantor y Bernhard Bolzano. Su libro de 1888 sobre números -Was Sind und was Sollen die Zahlen (Lo que los números son y deben ser)- definió la teoría lógica de números, tratando temas como la continuidad del espacio, la esencia de la aritmética y el papel de los números en la geometría. Un descubrimiento importante fue la definición de infinitud de un conjunto a través de mapeos, que fue vital para la posterior investigación de Cantor sobre la teoría de conjuntos. 

Hay muchas similitudes entre Gauss y Dedekind, incluidas sus personalidades: al igual que Gauss, Dedekind era un trabajador intenso y disciplinado que disfrutaba de un estilo de vida frugal. Era un pensador profundo que prefería las nociones matemáticas a las notaciones útiles. Debido a su estrecho parentesco y al hecho de que Dedekind entendía el trabajo de Gauss mejor que nadie, editó varios de los manuscritos inéditos de Gauss, y pudo comentar convincentemente sobre estos trabajos. Este proyecto llevó a Dedekind al examen de los números complejos, y dio la definición general de un ideal algebraico y estableció varios resultados clásicos. Este trabajo en álgebra, por el cual Dedekind es más famoso, dio lugar a muchos desarrollos fructíferos por parte de posteriores matemáticos, como Emmy Noether y David Hilbert. 

Dedekind estuvo activo en el Polytechnikum de Brunswick, del cual asumió la dirección desde 1872 hasta 1875. Recibió muchos doctorados honorarios durante su vida y tenía un gran número de corresponsales. En 1894 se convirtió en profesor emérito, y después de su muerte el 12 de febrero de 1916, los matemáticos en muchos países lo lloraron. 

La contribución de Dedekind a la matemática podría medirse a través de la cantidad de ideas que llevan su nombre, alrededor de una docena. Sus contribuciones a los fundamentos del concepto de número permitieron el progreso del análisis real, desarrollando un conocimiento más profundo de los números reales y el concepto de continuidad; sus teoremas sobre ideales algebraicos han estimulado mucha actividad adicional en el siglo XX.

 


Fuente bibliográfica:

  • McElroy, Tucker (2005) A to Z of Mathematicians. Facts On File, Inc.

Read Full Post »

Una manera conveniente para evaluar la situación de la matemática en el siglo XIX es mirar la carrera de su máximo exponente, Carl Friedrich Gauss, el último hombre en ser llamado el «Príncipe de la Matemática.» En 1801, el mismo año en que publicó su Disquisitiones Arithmeticae, redescubrió el asteroide Ceres (que había desaparecido detrás del Sol poco después de que fuera descubierto por primera vez y antes de que su órbita se conozca con precisión). Él fue el primero en hacer un buen análisis del método de los mínimos cuadrados en el análisis de datos estadísticos. Gauss realizó un importante trabajo en la teoría del potencial y, con el físico alemán Wilhelm Weber, construyó el primer telégrafo eléctrico. Él ayudó a llevar a cabo la primera investigación del campo magnético de la Tierra e hizo tanto trabajo teórico como de campo en cartografía y topografía. Fue un gran pensador que casi sin ayuda abrazó el mundo de la ciencia y el mundo de la matemática. Es su trabajo puramente matemático, sin embargo, lo que en su tiempo fue -y desde entonces ha sido- considerado como la mejor prueba de su genio.

Gauss

Los escritos de Gauss transformaron la teoría de números. Más notables son sus extensos escritos, que datan de 1797 a la década de 1820 pero aún no publicados hasta su muerte, sobre la teoría de las funciones elípticas. En 1827 publicó su descubrimiento crucial acerca de que la curvatura de una superficie puede definirse intrínsecamente, es decir, únicamente en términos de propiedades definidas en la superficie y sin hacer referencia al espacio euclidiano circundante. Este resultado iba a ser decisivo en la aceptación de la geometría no euclidiana. Todo el trabajo de Gauss muestra una preocupación aguda por el rigor y la negatividad de confiar en la intuición o la analogía física, que debía servir de inspiración a sus sucesores. Su énfasis en el logro de una comprensión conceptual completa, que puede haber dado lugar al disgusto de publicar, no fue en absoluto el menos influyente de sus logros.

Read Full Post »